Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Prebiotic iron–sulfur peptide catalysts generate a pH gradient across model membranes of late protocells

Abstract

Prebiotic chemistry was likely mediated by metals, but how such prebiotic chemistry progressed into the metabolic-like networks needed to sustain life remains unclear. Here we experimentally delineate a potential path from prebiotically plausible iron–sulfur peptide catalysts to the types of pH gradients exploited by all known living organisms. Iron–sulfur peptides cooperatively accept electrons from NADH in a manner that is only partially mediated by ionic interactions. The electrons are then either passed to a terminal electron acceptor, such as hydrogen peroxide, or to an intermediate carrier, such as ubiquinone. The reduction of hydrogen peroxide leads to the production of hydroxide, which then contributes to the formation of a pH gradient across late protocell membranes. The data are consistent with the activity of prebiotic iron–sulfur peptide catalysts providing a selective advantage by equipping protocells with a pathway that connects catabolism to anabolism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The effect of ligand occlusion and iron–sulfur nuclearity on the oxidation of NADH.
Fig. 2: Oxidation of NADH by Fe(iii) peptides.
Fig. 3: Proton gradient across vesicle membranes.
Fig. 4: Electron transfer at vesicle membranes.
Fig. 5: Schematic showing the path of electron transfer.

Similar content being viewed by others

References

  1. Copley, S. D., Smith, E. & Morowitz, H. J. The origin of the RNA world: co-evolution of genes and metabolism. Bioorg. Chem. 35, 430–443 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Ruiz-Mirazo, K., Briones, C. & de la Escosura, A. Prebiotic systems chemistry: new perspectives for the origins of life. Chem. Rev. 114, 285–366 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. Sutherland, J. D. The origin of life: out of the blue. Angew. Chem. Int. Ed. 55, 104–121 (2016).

    Article  CAS  Google Scholar 

  4. Martin, W. F., Sousa, F. L. & Lane, N. Energy at life’s origin. Science 344, 1092–1093 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Calvin, M. Evolution of enzymes and the photosynthetic apparatus. Science 130, 1170–1174 (1959).

    Article  CAS  PubMed  Google Scholar 

  6. Belmonte, L. & Mansy, S. S. Metal catalysts and the origin of life. Elements 12, 413–418 (2016).

    Article  CAS  Google Scholar 

  7. Dowler, M. J., Fuller, W. D., Orgel, L. E. & Sanchez, R. A. Prebiotic synthesis of propiolaldehyde and nicotinamide. Science 169, 1320–1321 (1970).

    Article  CAS  PubMed  Google Scholar 

  8. Cleaves, H. J. & Miller, S. L. The nicotinamide biosynthetic pathway is a by-product of the RNA world. J. Mol. Evol. 52, 73–77 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Kim, H.-J. & Benner, S. A. A direct prebiotic synthesis of nicotinamide nucleotide. Chemistry 24, 581–584 (2018).

    Article  CAS  PubMed  Google Scholar 

  10. Huang, F., Bugg, C. W. & Yarus, M. RNA-catalyzed CoA, NAD, and FAD synthesis from phosphopantetheine, NMN, and FMN. Biochemistry 39, 15548–15555 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Forsythe, J. G. et al. Ester-mediated amide bond formation driven by wet-dry cycles: a possible path to polypeptides on the prebiotic Earth. Angew. Chem. Int. Ed. 54, 9871–9875 (2015).

    Article  CAS  Google Scholar 

  12. Rodriguez-Garcia, M. et al. Formation of oligopeptides in high yield under simple programmable conditions. Nat. Commun. 6, 8385 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Leman, L., Orgel, L. & Ghadiri, M. R. Carbonyl sulfide-mediated prebiotic formation of peptides. Science 306, 283–286 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Bonfio, C. et al. UV-light-driven prebiotic synthesis of iron–sulfur clusters. Nat. Chem. 9, 1229–1234 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Scintilla, S. et al. Duplications of an iron–sulphur tripeptide leads to the formation of a protoferredoxin. Chem. Commun. 52, 13456–13459 (2016).

    Article  CAS  Google Scholar 

  16. Neville, R. G. The oxidation of cysteine by iron and hydrogen peroxide. J. Am. Chem. Soc. 79, 2456–2457 (1957).

    Article  CAS  Google Scholar 

  17. Bohning, J. J. & Weiss, K. The kinetics of the oxidation of 3-mercaptopropionic acid with potassium ferricyanide. J. Am. Chem. Soc. 82, 4724–4728 (1960).

    Article  CAS  Google Scholar 

  18. Keller, M. A., Turchyn, A. V. & Ralser, M. Non-enzymatic glycolysis and pentose phosphate pathway-like reactions in a plausible Archean ocean. Mol. Syst. Biol. 725, 1–12 (2014).

    Google Scholar 

  19. Muchowska, K. B. et al. Metals promote sequences of the reverse Krebs cycle. Nat. Ecol. Evol. 1, 1716–1721 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Bonfio, C. & Mansy, S. S. The chemical roots of iron–sulfur dependent metabolism. Biochemistry 56, 5225–5226 (2017).

    Article  CAS  PubMed  Google Scholar 

  21. Lide, D. R. (ed.) CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, 2005). .

  22. Karp, G. Cell and Molecular Biology (John Wiley and Sons, Hoboken, 2013).

  23. Zanello, P. The competition between chemistry and biology in assembling iron-sulfur derivatives. Molecular structures and electrochemistry. Part I. {Fe(Cys)4} proteins. Coord. Chem. Rev. 257, 1777–1805 (2013).

    Article  CAS  Google Scholar 

  24. Ball, R. & Brindley, J. Hydrogen peroxide thermochemical oscillator as driver for primordial RNA replication. J. R. Soc. Interface 11, 1–8 (2014).

    Article  CAS  Google Scholar 

  25. Borda, M. J., Elsetinow, A. R., Schoonen, M. A. & Strongin, D. R. Pyrite-induced hydrogen peroxide formation as a driving force in the evolution of photosynthetic organisms on an early Earth. Astrobiology 1, 283–288 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Bak, D. W. & Elliott, S. J. Alternative FeS cluster ligands: tuning redox potentials and chemistry. Curr. Opin. Chem. Biol. 19, 50–58 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Jameson, R. F., Linert, W. & Tschinkowitz, A. Anaerobic oxidation of cysteine to cystine by iron(III). Part 1. The reaction in acidic solution. J. Chem. Soc. Dalt. Trans. 8, 943–946 (1988).

    Article  Google Scholar 

  28. Jameson, R. F., Linert, W. & Tschinkowitz, A. Anaerobic oxidation of cysteine to cystine by iron(III). Part 2. The reaction in basic solution. J. Chem. Soc. Dalt. Trans. 8, 2109–2112 (1988).

    Article  Google Scholar 

  29. Powell, M. F., Wu, J. C. & Bruice, T. C. Ferricyanide oxidation of dihydropyridines and analogues. J. Am. Chem. Soc. 106, 3850–3856 (1984).

    Article  CAS  Google Scholar 

  30. Ignatz, E., Geisselbrecht, Y., Kiontke, S. & Essen, L. O. Nicotinamide adenine dinucleotides arrest photoreduction of class ii dna photolyases in FADH˙ state. Photochem. Photobiol. 94, 81–87 (2018).

    Article  CAS  PubMed  Google Scholar 

  31. Black, C. B., Huang, H. W. & Cowan, J. A. Biological coordination chemistry of magnesium, sodium, and potassium-ions - protein and nucleotide-binding sites. Coord. Chem. Rev. 135, 165–202 (1994).

    Article  Google Scholar 

  32. Nanninga, L. The association constant of the complexes of adenosine triphosphate with magnesium, calcium, strontium, and barium ions. Biochim. Biophys. Acta 16, 330–338 (1961).

    Article  Google Scholar 

  33. Chen, I. A. & Szostak, J. W. Membrane growth can generate a transmembrane pH gradient in fatty acid vesicles. Proc. Natl Acad. Sci. USA 101, 7965–7970 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lazcano, A. & Miller, S. L. On the origin of metabolic pathways. J. Mol. Evol. 49, 424–431 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Alberts, B. et al. Molecular Biology of the Cell (Garland Science, New York, 2014).

  36. Russell, M. J. & Martin, W. F. The rocky roots of the acetyl-CoA pathway. Trends Biochem. Sci. 29, 358–363 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Varma, S. J., Muchowska, K. B., Chatelain, P. & Moran, J. Native iron reduces CO2 to intermediates and end-products of the acetyl-CoA pathway. Nat. Ecol. Evol. 2, 1019–1024 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wächtershäuser, G. On the chemistry and evolution of the pioneer organism. Chem. Biodivers. 4, 584–602 (2007).

    Article  PubMed  Google Scholar 

  39. Lane, N. Proton gradients at the origin of life. BioEssays 39, 1–8 (2017).

    Article  Google Scholar 

  40. Skulachev, V. P. The laws of cell energetics. FEBS J. 208, 203–209 (1992).

    CAS  Google Scholar 

  41. Coggins, A. J. & Powner, M. W. Prebiotic synthesis of phosphoenol pyruvate by α-phosphorylation-controlled triose glycolysis. Nat. Chem. 9, 310–317 (2016).

    Article  CAS  PubMed  Google Scholar 

  42. Mansy, S. S. Membrane transport in primitive cells. Cold Spring Harb. Perspect. Biol. 2, a002188 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Monnard, P. A. & Deamer, D. W. Membrane self-assembly processes: steps toward the first cellular life. Anat. Rec. 268, 196–207 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Budin, I. & Szostak, J. W. Physical effects underlying the transition from primitive to modern cell membranes. Proc. Natl Acad. Sci. USA 108, 5249–5254 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Powner, M. W. & Sutherland, J. D. Prebiotic chemistry: a new modus operandi. Philos. Trans. R. Soc. B Biol. Sci. 366, 2870–2877 (2011).

    Article  CAS  Google Scholar 

  46. Albertsen, A. N., Duffy, C. D., Sutherland, J. D. & Monnard, P.-A. Self-assembly of phosphate amphiphiles in mixtures of prebiotically plausible surfactants. Astrobiology 14, 462–472 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fernández-García, C. & Powner, M. W. Selective acylation of nucleosides, nucleotides, and glycerol-3-phosphocholine in water. Synlett 28, 78–83 (2017).

    Google Scholar 

  48. Gibard, C., Bhowmik, S., Karki, M., Kim, E.-K. & Krishnamurthy, R. Phosphorylation, oligomerization and self-assembly in water under potential prebiotic conditions. Nat. Chem. 10, 212–217 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Fayolle, D. et al. Crude phosphorylation mixtures containing racemic lipid amphiphiles self-assemble to give stable primitive compartments. Sci. Rep. 7, 18106 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Trefil, J., Morowitz, H. J. & Smith, E. The origin of life: a case is made for the descent of electrons. Am. Sci. 97, 206–213 (2009).

    Article  Google Scholar 

  51. Schrödinger, E. What is life? (Cambridge Univ. Press, Cambridge, 1944).

  52. Shirt-Ediss, B., Murillo-Sànchez, S. & Ruiz-Mirazo, K. Framing major prebiotic transitions as stages of protocell development: Three challenges for origins-of-life research. Beilstein J. Org. Chem. 13, 1388–1395 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mansy, S. S. et al. Template-directed synthesis of a genetic polymer in a model protocell. Nature 454, 122–125 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chen, I. A., Roberts, R. W. & Szostak, J. W. The emergence of competition between model protocells. Science 305, 1474–1476 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Deamer, D. W. & Harang, E. Light-dependent pH gradients are generated in liposomes containing ferrocyanide. BioSystems 24, 1–4 (1990).

    Article  CAS  PubMed  Google Scholar 

  56. Keil, L. M. R., Möller, F. M., Kieß, M., Kudella, P. W. & Mast, C. B. Proton gradients and pH oscillations emerge from heat flow at the microscale. Nat. Commun. 8, 1897 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jensen, K. J., Tofteng Shelton, P. & Pedersen, S. L. (eds) Peptide Synthesis and Applications (Humana, New York, 2013).

  58. a|e — UV-Vis-IR Spectral Software v.2.2 (FluorTools, 2015); http://www.fluortools.com/software/ae

  59. Zhu, T. F., Budin, I. & Szostak, J. W. Preparation of fatty acid or phospholipid vesicles by thin-film rehydration. Methods Enzymol. 533, 267–274 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhu, T. F.., & Szostak, J. W.. Preparation of large monodisperse vesicles. PLoS ONE 4, e5009 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Funding from the Simons Foundation (290358 to S.S.M), the Armenise–Harvard Foundation (to S.S.M.) and COST actions CM1304 (to C.B. and S.S.M.) and CA15133 (to S.S.M.) is gratefully acknowledged. We thank J. D. Sutherland, A. Mariani, G. Petris, M. Forlin, O. D. Toparlak, V. Vaida, S. Ranjan and Y. Bozzi for helpful discussions and L. Valer, C. Del Bianco (Protein Technology Facility) and G. Scarduelli (Advanced Imaging Facility) for help with preliminary experiments, protein purification and microscopy, respectively.

Authors contributions

C.B. and S.S.M. designed the experiments. Redox experiments, peptide synthesis and vesicle studies were performed by C.B. and E.G. Electrochemistry was performed and analysed by C.B., M.C. and F.F.D.B. HPLC assays were performed and analysed by C.B. and G.G. The manuscript was written by C.B. and S.S.M. and edited by all the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheref S. Mansy.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–23, Supplementary Tables 1 & 2, Supplementary References

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonfio, C., Godino, E., Corsini, M. et al. Prebiotic iron–sulfur peptide catalysts generate a pH gradient across model membranes of late protocells. Nat Catal 1, 616–623 (2018). https://doi.org/10.1038/s41929-018-0116-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-018-0116-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing