Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Sesquiterpene cyclizations catalysed inside the resorcinarene capsule and application in the short synthesis of isolongifolene and isolongifolenone

Abstract

Terpenes constitute the largest class of natural products and serve as an important source for medicinal treatments. Despite constant progress in chemical synthesis, the construction of complex polycyclic sesqui- and diterpene scaffolds remains challenging. However, natural cyclase enzymes are able to form the whole variety of terpene structures from just a handful of linear precursors. Man-made catalysts able to mimic such natural enzymes are lacking. Here, we describe examples of sesquiterpene cyclizations inside an enzyme-mimicking supramolecular catalyst. This strategy allowed the formation of the tricyclic sesquiterpene isolongifolene in only four steps. The mechanism of the catalysed cyclization reaction was elucidated using 13C-labelling studies and density functional theory calculations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Comparison of the total synthesis and biosynthesis6 of isolongifolene3,4 and longifolene5.
Fig. 2: Selective cyclization of the monoterpene geranyl acetate catalysed by the resorcinarene capsule.
Fig. 3: Product analysis of the capsule-catalysed cyclization reactions of farnesyl substrates.
Fig. 4: Product analysis of the capsule-catalysed cyclization reactions of cyclofarnesyl substrates.
Fig. 5: Computed energy profile for the formation of protonated isolongifolene 19.
Fig. 6: Short synthesis of isolongifolene and isolongifolenone.

Similar content being viewed by others

References

  1. Maimone, T. J. & Baran, P. S. Modern synthetic efforts toward biologically active terpenes. Nat. Chem. Biol. 3, 396–407 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Urabe, D., Asaba, T. & Inoue, M. Convergent strategies in total syntheses of complex terpenoids. Chem. Rev. 115, 9207–9231 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Sobti, R. R. & Dev, S. Synthesis of (±)-isolongifolene. Tetrahedron Lett. 8, 2893–2895 (1967).

    Article  Google Scholar 

  4. Sobti, R. R. & Dev, S. Studies in sesquiterpenes—XLIII: isolongifolene (part 4): synthesis. Tetrahedron 26, 649–655 (1970).

    Article  CAS  Google Scholar 

  5. Volkmann, R. A., Andrews, G. C. & Johnson, W. S. Novel synthesis of longifolene. J. Am. Chem. Soc. 97, 4777–4779 (1975).

    Article  CAS  Google Scholar 

  6. Arigoni, D. Stereochemical aspects of sesquiterpene biosynthesis. Pure Appl. Chem. 41, 219–245 (1975).

    Article  CAS  Google Scholar 

  7. Berson, J. A. et al. Chemistry of methylnorbornyl cations. VI. The stereochemistry of vicinal hydride shift. Evidence for the nonclassical structure of 3-methyl-2-norbornyl cations. J. Am. Chem. Soc. 89, 2590–2600 (1967).

    Article  CAS  Google Scholar 

  8. Yadav, J. S., Nayak, U. R. & Dev, S. Studies in sesquiterpenes—LV: isolongifolene(part 6): mechanism of rearrangement of longifolene to isolongifolene-I. Tetrahedron 36, 309–315 (1980).

    Article  CAS  Google Scholar 

  9. Svensson, L. & Bendz, G. Essential oils from some liverworts. Phytochemistry 11, 1172–1173 (1972).

    Article  CAS  Google Scholar 

  10. Pronin, S. V. & Shenvi, R. A. Synthesis of highly strained terpenes by non-stop tail-to-head polycyclization. Nat. Chem. 4, 915–920 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Yoder, R. A. & Johnston, J. N. A case study in biomimetic total synthesis: polyolefin carbocyclizations to terpenes and steroids. Chem. Rev. 105, 4730–4756 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ohta, Y. & Hirose, Y. Electrophile induced cyclization of farnesol. Chem. Lett. 1, 263–266 (1972).

    Article  Google Scholar 

  13. Andersen, N. H. & Syrdal, D. D. Chemical simulation of the biogenesis of cedrene. Tetrahedron Lett. 13, 2455–2458 (1972).

    Article  Google Scholar 

  14. Polovinka, M. P. et al. Cyclization and rearrangements of farnesol and nerolidol stereoisomers in superacids. J. Org. Chem. 59, 1509–1517 (1994).

    Article  CAS  Google Scholar 

  15. Gutsche, C. D., Maycock, J. R. & Chang, C. T. Acid-catalyzed cyclization of farnesol and nerolidol. Tetrahedron 24, 859–876 (1968).

    Article  Google Scholar 

  16. Susumu, K., Mikio, T. & Teruaki, M. Biogenetic-like cyclization of farnesol and nerolidol to bisabolene by the use of 2-fluorobenzothiazolium salt. Chem. Lett. 6, 1169–1172 (1977).

    Article  Google Scholar 

  17. Christianson, D. W. Structural biology and chemistry of the terpenoid cyclases. Chem. Rev. 106, 3412–3442 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Pluth, M. D., Bergman, R. G. & Raymond, K. N. Proton-mediated chemistry and catalysis in a self-assembled supramolecular host. Acc. Chem. Res. 42, 1650–1659 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Yoshizawa, M. & Fujita, M. Development of unique chemical phenomena within nanometer-sized, self-assembled coordination hosts. Bull. Chem. Soc. Jpn. 83, 609–618 (2010).

    Article  CAS  Google Scholar 

  20. Ronson, T. K., Zarra, S., Black, S. P. & Nitschke, J. R. Metal–organic container molecules through subcomponent self-assembly. Chem. Commun. 49, 2476–2490 (2013).

    Article  CAS  Google Scholar 

  21. Han, M., Engelhard, D. M. & Clever, G. H. Self-assembled coordination cages based on banana-shaped ligands. Chem. Soc. Rev. 43, 1848–1860 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. Zhang, G. & Mastalerz, M. Organic cage compounds—from shape-persistency to function. Chem. Soc. Rev. 43, 1934–1947 (2014).

    Article  CAS  PubMed  Google Scholar 

  23. Leenders, S. H. A. M., Gramage-Doria, R., de Bruin, B. & Reek, J. N. H. Transition metal catalysis in confined spaces. Chem. Soc. Rev. 44, 433–448 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. Hof, F., Craig, S. L., Nuckolls, C. & Rebek, J. J. Molecular encapsulation. Angew. Chem. Int. Ed. 41, 1488–1508 (2002).

    Article  CAS  Google Scholar 

  25. Rebek, J. Molecular behavior in small spaces. Acc. Chem. Res. 42, 1660–1668 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Ajami, D. & Rebek, J. More chemistry in small spaces. Acc. Chem. Res. 46, 990–999 (2012).

    Article  CAS  PubMed  Google Scholar 

  27. Ajami, D., Liu, L. & Rebek, J. Jr Soft templates in encapsulation complexes. Chem. Soc. Rev. 44, 490–499 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. Jordan, J. H. & Gibb, B. C. Molecular containers assembled through the hydrophobic effect. Chem. Soc. Rev. 44, 547–585 (2014).

    Article  Google Scholar 

  29. MacGillivray, L. R. & Atwood, J. L. A chiral spherical molecular assembly held together by 60 hydrogen bonds. Nature 389, 469–472 (1997).

    Article  CAS  Google Scholar 

  30. Zhang, Q. & Tiefenbacher, K. Hexameric resorcinarene capsule is a Brønsted acid: investigation and application to synthesis and catalysis. J. Am. Chem. Soc. 135, 16213–16219 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Bianchini, G., La Sorella, G., Canever, N., Scarso, A. & Strukul, G. Efficient isonitrile hydration through encapsulation within a hexameric self-assembled capsule and selective inhibition by a photo-controllable competitive guest. Chem. Commun. 49, 5322–5324 (2013).

    Article  CAS  Google Scholar 

  32. Shivanyuk, A. & Rebek, J. Reversible encapsulation by self-assembling resorcinarene subunits. Proc. Natl Acad. Sci. USA 98, 7662–7665 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Avram, L. & Cohen, Y. Spontaneous formation of hexameric resorcinarene capsule in chloroform solution as detected by diffusion NMR. J. Am. Chem. Soc. 124, 15148–15149 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Zhang, Q. & Tiefenbacher, K. Terpene cyclization catalysed inside a self-assembled cavity. Nat. Chem. 7, 197–202 (2015).

    Article  CAS  PubMed  Google Scholar 

  35. Zhang, Q., Catti, L., Pleiss, J. & Tiefenbacher, K. Terpene cyclizations inside a supramolecular catalyst: leaving-group-controlled product selectivity and mechanistic studies. J. Am. Chem. Soc. 139, 11482–11492 (2017).

    Article  CAS  PubMed  Google Scholar 

  36. Snyder, S. A., Treitler, D. S. & Brucks, A. P. Simple reagents for direct halonium-induced polyene cyclizations. J. Am. Chem. Soc. 132, 14303–14314 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Steele, C. L., Crock, J., Bohlmann, J. & Croteau, R. Sesquiterpene synthases from grand fir (Abies grandis): comparison of constitutive and wound-induced activities, and cDNA isolation, characterization, and bacterial expression of δ-selinene synthase and γ-humulene synthase. J. Biol. Chem. 273, 2078–2089 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Tanimoto, H., Kiyota, H., Oritani, T. & Matsumoto, K. Stereochemistry of a unique tricarbocyclic compound prepared by superacid-catalyzed cyclization. Synlett 1, 121–122 (1997).

    Article  Google Scholar 

  39. Fráter, G., Müller, U. & Kraft, P. Synthesis of tricyclic ketones with sesquiterpene skeletons by acid-catalyzed rearrangement of β-monocyclofarnesol. Helv. Chim. Acta 82, 522–530 (1999).

    Article  Google Scholar 

  40. Croteau, R., Satterwhite, D. M., Cane, D. E. & Chang, C. C. Biosynthesis of monoterpenes. Enantioselectivity in the enzymatic cyclization of (+)- and (–)-linalyl pyrophosphate to (+)- and (–)-pinene and (+)- and (–)-camphene. J. Biol. Chem. 263, 10063–10071 (1988).

    CAS  PubMed  Google Scholar 

  41. Meguro, A. et al. An unusual terpene cyclization mechanism involving a carbon–carbon bond rearrangement. Angew. Chem. Int. Ed. 54, 4353–4356 (2015).

    Article  CAS  Google Scholar 

  42. Rabe, P. et al. Mechanistic investigations of two bacterial diterpene cyclases: spiroviolene synthase and tsukubadiene synthase. Angew. Chem. Int. Ed. 56, 2776–2779 (2017).

    Article  CAS  Google Scholar 

  43. Rabe, P. et al. Conformational analysis, thermal rearrangement, and EI-MS fragmentation mechanism of (1(10)E,4E,6S,7R)-germacradien-6-ol by 13C-labeling experiments. Angew. Chem. Int. Ed. 54, 13448–13451 (2015).

    Article  CAS  Google Scholar 

  44. Matsuda, S. P. T., Wilson, W. K. & Xiong, Q. Mechanistic insights into triterpene synthesis from quantum mechanical calculations. Detection of systematic errors in B3LYP cyclization energies. Org. Biomol. Chem. 4, 530–543 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Tantillo, D. J. Biosynthesis via carbocations: theoretical studies on terpene formation. Nat. Prod. Rep. 28, 1035–1053 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Shimomura, O. & Johnson, F. H. The structure of Latia luciferin. Biochemistry 7, 1734–1738 (1968).

    Article  CAS  PubMed  Google Scholar 

  47. Wendt, K. U. & Schulz, G. E. Isoprenoid biosynthesis: manifold chemistry catalyzed by similar enzymes. Structure 6, 127–133 (1998).

    Article  CAS  PubMed  Google Scholar 

  48. Peters, R. J. Two rings in them all: the labdane-related diterpenoids. Nat. Prod. Rep. 27, 1521–1530 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ghosal, M., Karpha, T. K., Pal, S. K. & Mukherjee, D. Facile synthesis of (±)-isolongifolene and (±)-isolongifolenedione involving Ar1-5 cyclisations. Tetrahedron Lett. 36, 2527–2528 (1995).

    Article  CAS  Google Scholar 

  50. Zhang, A., Klun, J. A., Wang, S., Carroll, J. F. & Debboun, M. Isolongifolenone: a novel sesquiterpene repellent of ticks and mosquitoes. J. Med. Entomol. 46, 100–106 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Frisch, M. J. et al. Gaussian 16. Rev. A.03 (2016).

  52. Becke, A. D. Density‐functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).

    Article  CAS  Google Scholar 

  53. Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011).

    Article  CAS  PubMed  Google Scholar 

  54. Adamo, C. & Barone, V. Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: the mPW and mPW1PW models. J. Chem. Phys. 108, 664–675 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by funding from the European Research Council Horizon 2020 Programme (ERC Starting Grant 714620-TERPENECAT), Swiss National Science Foundation (as part of the NCCR Molecular Systems Engineering) and Bayerische Akademie der Wissenschaften (Junges Kolleg). We thank the computing center of the University of Cologne (RRZK) for providing CPU time on the DFG-funded supercomputer CHEOPS.

Author information

Authors and Affiliations

Authors

Contributions

K.T. conceived and supervised the project. K.T. and Q.Z. planned the project. Q.Z. carried out all the experiments except the synthesis of 13C-labelled substrates, which were synthesized by J.R. J.S.D. conceived the investigations concerning the 13C-labelled substrates. The 13C-labelled products were analysed by J.S.D. and J.R., who elucidated the proposed mechanism for the formation of isolongifolene. B.G. performed the DFT calculations. Q.Z. and K.T. compiled the first draft of the manuscript. All authors contributed to the final version of the manuscript.

Corresponding author

Correspondence to Konrad Tiefenbacher.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Supplementary Discussion, Supplementary Figures 1–31, Supplementary Tables 1–10, Supplementary References

Supplementary Data

Cartesian Coordinates of the optimized intermediates and transition states

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Rinkel, J., Goldfuss, B. et al. Sesquiterpene cyclizations catalysed inside the resorcinarene capsule and application in the short synthesis of isolongifolene and isolongifolenone. Nat Catal 1, 609–615 (2018). https://doi.org/10.1038/s41929-018-0115-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-018-0115-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing