Computational optimization of electric fields for better catalysis design

A Publisher Correction to this article was published on 27 September 2018

This article has been updated

Abstract

Although the ubiquitous role that long-ranged electric fields play in catalysis has been recognized, it is seldom used as a primary design parameter in the discovery of new catalytic materials. Here we illustrate how electric fields have been used to computationally optimize biocatalytic performance of a synthetic enzyme, and how they could be used as a unifying descriptor for catalytic design across a range of homogeneous and heterogeneous catalysts. Although focusing on electrostatic environmental effects may open new routes toward the rational optimization of efficient catalysts, much more predictive capacity is required of theoretical methods to have a transformative impact in their computational design — and thus experimental relevance — when using electric field alignments in the reactive centres of complex catalytic systems.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Optimization of electric fields in the KE15 Kemp Eliminase synthetic enzyme.
Fig. 2: Proposed mechanism for the alkyl–alkyl reductive elimination from P(CH3)3AuMe2I.
Fig. 3: Electric field enhancements on alkyl–alkyl reduction in a supramolecular capsule.
Fig. 4: Atomistic representation of a Diels–Alder reaction under nanoconfinement.

Change history

  • 27 September 2018

    In the version of this Perspective originally published, there were errors in equation (1) and the sentence immediately following it, as well as in Fig. 1; the details are shown in the correction notice. These errors have now been corrected.

References

  1. 1.

    Calabrese Barton, S., Gallaway, J. & Atanassov, P. Enzymatic biofuel cells for implantable and microscale devices. Chem. Rev. 104, 4867–4886 (2004).

    Article  CAS  Google Scholar 

  2. 2.

    Wei, H. & Wang, E. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem. Soc. Rev. 42, 6060–6093 (2013).

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Kandemir, T., Schuster, M. E., Senyshyn, A., Behrens, M. & Schlogl, R. The Haber–Bosch process revisited: on the real structure and stability of “ammonia iron” under working conditions. Angew. Chem. 52, 12723–12726 (2013).

    CAS  Article  Google Scholar 

  4. 4.

    Parida, B., Iniyan, S. & Goic, R. A review of solar photovoltaic technologies. Renew. Sust. Ener. Rev 15, 1625–1636 (2011).

    CAS  Article  Google Scholar 

  5. 5.

    Warshel, A. Energetics of enzyme catalysis. Proc. Natl Acad. Sci. USA 75, 5250–5254 (1978).

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Jindal, G. & Warshel, A. Misunderstanding the preorganization concept can lead to confusions about the origin of enzyme catalysis. Proteins 85, 2157–2161 (2017).

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Shaik, S., Mandal, D. & Ramanan, R. Oriented electric fields as future smart reagents in chemistry. Nat. Chem 8, 1091–1098 (2016).

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Bhowmick, A., Sharma, S. C. & Head-Gordon, T. The importance of the scaffold for de novo enzymes: a case study with kemp eliminase. J. Am. Chem. Soc. 139, 5793–5800 (2017).

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Liu, C. T. et al. Probing the electrostatics of active site microenvironments along the catalytic cycle for Escherichia coli dihydrofolate reductase. J. Am. Chem. Soc. 136, 10349–10360 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Reppert, M. & Tokmakoff, A. Computational amide I 2D IR spectroscopy as a probe of protein structure and dynamics. Ann. Rev. Phys. Chem 67, 359–386 (2016).

    CAS  Article  Google Scholar 

  11. 11.

    Pollack, R. M. Enzymatic mechanisms for catalysis of enolization: ketosteroid isomerase. Bioorg. Chem. 32, 341–353 (2004).

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Kamerlin, S. C., Sharma, P. K., Chu, Z. T. & Warshel, A. Ketosteroid isomerase provides further support for the idea that enzymes work by electrostatic preorganization. Proc. Natl Acad. Sci. USA 107, 4075–4080 (2010).

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Fried, S. D., Bagchi, S. & Boxer, S. G. Extreme electric fields power catalysis in the active site of ketosteroid isomerase. Science 346, 1510–1514 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Chen, D. & Savidge, T. BIOPHYSICS. Comment on “Extreme electric fields power catalysis in the active site of ketosteroid isomerase”. Science 349, 936 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Natarajan, A. et al. BIOPHYSICS. Comment on “Extreme electric fields power catalysis in the active site of ketosteroid isomerase”. Science 349, 936 (2015).

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Wang, L., Fried, S. D. & Markland, T. E. Proton network flexibility enables robustness and large electric fields in the ketosteroid isomerase active site. J. Phys. Chem. B 121, 9807–9815 (2017).

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Baker, D. An exciting but challenging road ahead for computational enzyme design. Protein Sci. 19, 1817–1819 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Korendovych, I. V. & DeGrado, W. F. Catalytic efficiency of designed catalytic proteins. Curr. Opin. Struct. Bio 27, 113–121 (2014).

    CAS  Article  Google Scholar 

  19. 19.

    Jindal, G., Ramachandran, B., Bora, R. P. & Warshel, A. Exploring the development of ground-state destabilization and transition-state stabilization in two directed evolution paths of kemp eliminases. ACS Catal 7, 3301–3305 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Frushicheva, M. P., Cao, J., Chu, Z. T. & Warshel, A. Exploring challenges in rational enzyme design by simulating the catalysis in artificial kemp eliminase. Proc. Natl Acad. Sci. USA 107, 16869–16874 (2010).

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Labas, A., Szabo, E., Mones, L. & Fuxreiter, M. Optimization of reorganization energy drives evolution of the designed Kemp eliminase KE07. Biochim. Biophys. Acta 1834, 908–917 (2013).

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Vaissier, V., Sharma, S. C., Schaettle, K., Zhang, T. & Head-Gordon, T. Computational optimization of electric fields for improving catalysis of a designed kemp eliminase. ACS Catal 8, 219–227 (2017).

    Article  CAS  Google Scholar 

  23. 23.

    Breiner, B., Clegg, J. K. & Nitschke, J. R. Reactivity modulation in container molecules. Chem. Sci 2, 51–56 (2011).

    CAS  Article  Google Scholar 

  24. 24.

    Mansoor, E., Mynsbrugge, J. Vd, Head-Gordon, M. & Bell, A. T. Impact of long-range electrostatic and dispersive interactions on theoretical predictions of adsorption and catalysis in zeolites. Catal. Today 312, 51–65 (2018).

    CAS  Article  Google Scholar 

  25. 25.

    Csicsery, S. M. Shape-selective catalysis in zeolites. Zeolites 4, 202–213 (1984).

    CAS  Article  Google Scholar 

  26. 26.

    Deshlahra, P. & Iglesia, E. Toward more complete descriptors of reactivity in catalysis by solid acids. ACS Catal 6, 5386–5392 (2016).

    CAS  Article  Google Scholar 

  27. 27.

    Dusselier, M., Van Wouwe, P., Dewaele, A., Jacobs, P. A. & Sels, B. F. GREEN CHEMISTRY. Shape-selective zeolite catalysis for bioplastics production. Science 349, 78–80 (2015).

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Gorin, C. F., Beh, E. S. & Kanan, M. W. An electric field-induced change in the selectivity of a metal oxide-catalyzed epoxide rearrangement. J. Am. Chem. Soc. 134, 186–189 (2012).

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Kaphan, D. M., Toste, F. D., Bergman, R. G. & Raymond, K. N. enabling new modes of reactivity via constrictive binding in a supramolecular-assembly-catalyzed aza-prins cyclization. J. Am. Chem. Soc. 137, 9202–9205 (2015).

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Levin, M. D. et al. Scope and mechanism of cooperativity at the intersection of organometallic and supramolecular catalysis. J. Am. Chem. Soc. 138, 9682–9693 (2016).

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Frushicheva, M. P., Mukherjee, S. & Warshel, A. Electrostatic origin of the catalytic effect of a supramolecular host catalyst. J. Phys. Chem. B 116, 13353–13360 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Mardirossian, N. & Head-Gordon, M. Mapping the genome of meta-generalized gradient approximation density functionals: The search for B97M.-V. J. Chem. Phys. 142, 074111 (2015).

    Article  CAS  PubMed  Google Scholar 

  33. 33.

    Mardirossian, N. et al. Use of the rVV10 nonlocal correlation functional in the B97M-V density functional: defining B97M-rV and related functionals. J. Phys. Chem. Lett. 8, 35–40 (2017).

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Pacchioni, G., Lomas, J. R. & Illas, F. Electric field effects in heterogeneous catalysis. J. Mol. Catal. A 119, 263–273 (1997).

    CAS  Article  Google Scholar 

  35. 35.

    Lee, V. J. Heterogeneous catalysis: effect of an alternating electric field. Science 152, 514 (1966).

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Simons, R. Strong electric field effects on proton transfer between membrane-bound amines and water. Nature 280, 824–826 (1979).

    CAS  Article  Google Scholar 

  37. 37.

    Chen, L. D., Urushihara, M., Chan, K. & Nørskov, J. K. Electric field effects in electrochemical CO2 Reduction. ACS Catal 6, 7133–7139 (2016).

    CAS  Article  Google Scholar 

  38. 38.

    Liu, M. et al. Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration. Nature 537, 382–386 (2016).

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Sorenson, S. A., Patrow, J. G. & Dawlaty, J. M. Solvation reaction field at the interface measured by vibrational sum frequency generation spectroscopy. J. Am. Chem. Soc. 139, 2369–2378 (2017).

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Patrow, J. G., Sorenson, S. A. & Dawlaty, J. M. Direct spectroscopic measurement of interfacial electric fields near an electrode under polarizing or current-carrying conditions. J. Phys. Chem. C 121, 11585–11592 (2017).

    CAS  Article  Google Scholar 

  41. 41.

    Aragones, A. C. et al. Electrostatic catalysis of a Diels–Alder reaction. Nature 531, 88–91 (2016).

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Akamatsu, M., Sakai, N. & Matile, S. Electric-field-assisted anion–π catalysis. J. Am. Chem. Soc. 139, 6558–6561 (2017).

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Copéret, C., Chabanas, M., Saint‐Arroman, R. P. & Basset, J. M. Homogeneous and heterogeneous catalysis: bridging the gap through surface organometallic chemistry. Angew. Chem. Int. Ed. 42, 156–181 (2003).

    Article  Google Scholar 

  44. 44.

    Alemani, M. et al. Electric field-induced isomerization of azobenzene by STM. J. Am. Chem. Soc. 128, 14446–14447 (2006).

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Rideout, D. C. & Breslow, R. Hydrophobic acceleration of Diels–Alder reactions. J. Am. Chem. Soc. 102, 7816–7817 (1980).

    CAS  Article  Google Scholar 

  46. 46.

    Korzenski, M. B. & Kolis, J. W. Diels–Alder reactions using supercritical water as an aqueous solvent medium. Tetrahedron Lett. 38, 5611–5614 (1997).

    CAS  Article  Google Scholar 

  47. 47.

    Acevedo, O., Jorgensen, W. L. & Evanseck, J. D. Elucidation of rate variations for a Diels–Alder reaction in ionic liquids from QM/MM simulations. J. Chem. Theory Comput. 3, 132–138 (2007).

    CAS  Article  PubMed  Google Scholar 

  48. 48.

    Harano, Y., Sato, H. & Hirata, F. Solvent effects on a Diels−Alder reaction in supercritical water: RISM-SCF Study. J. Am. Chem. Soc. 122, 2289–2293 (2000).

    CAS  Article  Google Scholar 

  49. 49.

    Dinpajooh, M. & Matyushov, D. V. Dielectric constant of water in the interface. J. Chem. Phys. 145, 014504 (2016).

    Article  CAS  PubMed  Google Scholar 

  50. 50.

    Zhang, C., Gygi, F. & Galli, G. Strongly anisotropic dielectric relaxation of water at the nanoscale. J. Phys. Chem. Lett. 4, 2477–2481 (2013).

    CAS  Article  Google Scholar 

  51. 51.

    Sobrino Fernández, M., Peeters, F. M. & Neek-Amal, M. Electric-field-induced structural changes in water confined between two graphene layers. Phys. Rev. B 94, 045436 (2016).

    Article  CAS  Google Scholar 

  52. 52.

    Muñoz-Santiburcio, D. & Marx, D. Nanoconfinement in slit pores enhances water self-dissociation. Phys. Rev. Lett. 119, 056002 (2017).

    Article  PubMed  Google Scholar 

  53. 53.

    Ruiz Pestana, L., Felberg, L. E. & Head-Gordon, T. Coexistence of multilayered phases of confined water: the importance of flexible confining surfaces. ACS Nano 12, 448–454 (2018).

    CAS  Article  PubMed  Google Scholar 

  54. 54.

    Sundararaman, R. & Schwarz, K. Evaluating continuum solvation models for the electrode–electrolyte interface: challenges and strategies for improvement. J. Chem. Phys. 146, 084111 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Hansen, H. A., Viswanathan, V. & Nørskov, J. K. Unifying kinetic and thermodynamic analysis of 2e and 4e reduction of oxygen on metal surfaces. J. Phys. Chem. C 118, 6706–6718 (2014).

    CAS  Article  Google Scholar 

  56. 56.

    Sundararaman, R., Schwarz, K. A., Letchworth-Weaver, K. & Arias, T. A. Spicing up continuum solvation models with SaLSA: the spherically averaged liquid susceptibility ansatz. J. Chem. Phys. 142, 054102 (2015).

    Article  CAS  PubMed  Google Scholar 

  57. 57.

    Cox, S. J. & Geissler, P. L. Interfacial ion solvation: obtaining the thermodynamic limit from molecular simulations. Preprint at https://arxiv.org/abs/1801.00810 (2018).

  58. 58.

    Jinnouchi, R. & Anderson, A. B. Electronic structure calculations of liquid–solid interfaces: combination of density functional theory and modified Poisson–Boltzmann theory. Phys. Rev. B 77, 245417 (2008).

    Article  CAS  Google Scholar 

  59. 59.

    Fried, S. D. & Boxer, S. G. Electric fields and enzyme catalysis. Ann. Rev. Biochem 86, 387–415 (2017).

    CAS  Article  PubMed  Google Scholar 

  60. 60.

    Ruiz Pestana, L., Mardirossian, N., Head-Gordon, M. & Head-Gordon, T. Ab initio molecular dynamics simulations of liquid water using high quality meta-GGA functionals. Chem. Sci 8, 3554–3565 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Mardirossian, N. & Head-Gordon, M. Thirty years of density functional theory in computational chemistry: an overview and extensive assessment of 200 density functionals. Mol. Phys. 115, 2315–2372 (2017).

    CAS  Article  Google Scholar 

  62. 62.

    Dziedzic, J. et al. TINKTEP: a fully self-consistent, mutually polarizable QM/MM approach based on the AMOEBA force field. J. Chem. Phys. 145, 124106 (2016).

    Article  CAS  PubMed  Google Scholar 

  63. 63.

    Mao, Y. et al. Performance of the AMOEBA water model in the vicinity of QM solutes: a diagnosis using energy decomposition analysis. J. Chem. Theory Comput. 13, 1963–1979 (2017).

    CAS  Article  PubMed  Google Scholar 

  64. 64.

    Sauer, J. & Freund, H.-J. Models in catalysis. Catal. Lett. 145, 109–125 (2014).

    Article  CAS  Google Scholar 

  65. 65.

    Piccini, G., Alessio, M. & Sauer, J. Ab Initio calculation of rate constants for molecule–surface reactions with chemical accuracy. Angew. Chem. 55, 5235–5237 (2016).

    CAS  Article  Google Scholar 

  66. 66.

    Vaissier, V. & Van Voorhis, T. Quantum chemical approaches to [NiFe] hydrogenase. Essays Biochem. 61, 293–303 (2017).

    Article  PubMed  Google Scholar 

  67. 67.

    Dong, G. & Ryde, U. Protonation states of intermediates in the reaction mechanism of [NiFe] hydrogenase studied by computational methods. J. Biolog. Inorg. Chem. 21, 383–394 (2016).

    CAS  Article  Google Scholar 

  68. 68.

    Ghosh, S., Castillo-Lora, J., Soudackov, A. V., Mayer, J. M. & Hammes-Schiffer, S. Theoretical insights into proton-coupled electron transfer from a photoreduced ZnO nanocrystal to an organic radical. Nano Lett. 17, 5762–5767 (2017).

    CAS  Article  PubMed  Google Scholar 

  69. 69.

    Olsson, M. H. M., Siegbahn, P. E. M. & Warshel, A. Simulations of the large kinetic isotope effect and the temperature dependence of the hydrogen atom transfer in lipoxygenase. J. Am. Chem. Soc. 126, 2820–2828 (2004).

    CAS  Article  PubMed  Google Scholar 

  70. 70.

    Marsalek, O. & Markland, T. E. Ab initio molecular dynamics with nuclear quantum effects at classical cost: ring polymer contraction for density functional theory. J. Chem. Phys. 144, 054112 (2016).

    Article  CAS  PubMed  Google Scholar 

  71. 71.

    Ghosh, S., Soudackov, A. V. & Hammes-Schiffer, S. Role of Proton Diffusion in the nonexponential kinetics of proton-coupled electron transfer from photoreduced ZnO nanocrystals. ACS Nano 11, 10295–10302 (2017).

    CAS  Article  PubMed  Google Scholar 

  72. 72.

    Ribeiro, A. J. M., Santos-Martins, D., Russo, N., Ramos, M. J. & Fernandes, P. A. Enzymatic flexibility and reaction rate: a QM/MM study of HIV-1 protease. ACS Catal 5, 5617–5626 (2015).

    CAS  Article  Google Scholar 

  73. 73.

    Limmer, D. T. & Willard, A. P. Nanoscale heterogeneity at the aqueous electrolyte–electrode interface. Chem. Phys. Lett. 620, 144–150 (2015).

    CAS  Article  Google Scholar 

  74. 74.

    Albaugh, A., Niklasson, A. M. N. & Head-Gordon, T. Accurate classical polarization solution with no self-consistent field iterations. J. Phys. Chem. Lett. 8, 1714–1723 (2017).

    CAS  Article  PubMed  Google Scholar 

  75. 75.

    Margul, D. T. & Tuckerman, M. E. A stochastic, resonance-free multiple time-step algorithm for polarizable models that permits very large time steps. J. Chem. Theory Comput. 12, 2170–2180 (2016).

    CAS  Article  PubMed  Google Scholar 

  76. 76.

    Vitale, V. et al. Performance of extended Lagrangian schemes for molecular dynamics simulations with classical polarizable force fields and density functional theory. J. Chem. Phys. 146, 124115 (2017).

    Article  CAS  PubMed  Google Scholar 

  77. 77.

    Frenzel, J., Meyer, B. & Marx, D. Bicanonical ab initio molecular dynamics for open systems. J. Chem. Theory Comput. 13, 3455–3469 (2017).

    CAS  Article  PubMed  Google Scholar 

  78. 78.

    Cheng, T., Xiao, H. & Goddard, W. A. Full atomistic reaction mechanism with kinetics for CO reduction on Cu(100) from ab initio molecular dynamics free-energy calculations at 298 K. Proc. Natl Acad. Sci. USA 114, 1795 (2017).

    CAS  Article  PubMed  Google Scholar 

  79. 79.

    Bhowmick, A., Sharma, S. C., Honma, H. & Head-Gordon, T. The role of side chain entropy and mutual information for improving the de novo design of Kemp eliminases KE07 and KE70. Phys. Chem. Chem. Phys. 18, 19386–19396 (2016).

    CAS  Article  PubMed  Google Scholar 

  80. 80.

    Chen, X. et al. The formation time of TiO and TiO–Ti radicals at the n-SrTiO3/aqueous interface during photocatalytic water oxidation. J. Am. Chem. Soc. 139, 1830–1841 (2017).

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

The catalysis application supported by the US Department of Energy, Office of Science, Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division under Contract no. DE-AC02-05CH11231. The material on theory and methods is based upon work supported by the US Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, Scientific Discovery through Advanced Computing (SciDAC) program. This research received a 2017 ASCR Leadership Computing Challenge (ALCC) allocation at the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the US Department of Energy under Contract no. DE-AC02-05CH11231.

Author information

Affiliations

Authors

Contributions

T.H.G. conceived the theme, V.V. and T.H.G. wrote the manuscript, and V.V. and L.R.P. designed the figures and the graphical abstract image. All authors contributed data and insights, discussed the Perspective and edited the manuscript.

Corresponding author

Correspondence to Teresa Head-Gordon.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Welborn, V.V., Ruiz Pestana, L. & Head-Gordon, T. Computational optimization of electric fields for better catalysis design. Nat Catal 1, 649–655 (2018). https://doi.org/10.1038/s41929-018-0109-2

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing