Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Pentamethylcyclopentadienyl rhodium(III)–chiral disulfonate hybrid catalysis for enantioselective C–H bond functionalization

An Author Correction to this article was published on 03 January 2019

This article has been updated


Though Cp*Rh(iii) complexes are prominent and versatile catalysts for C–H bond functionalization reactions, catalytic stereocontrol is difficult due to the lack of vacant coordination sites. Here, we report a hybrid strategy for inducing chirality without using previously reported chiral Cpx ligands. A preformed hybrid catalyst, [Cp*RhLN][6,6′-Br-(S)-BINSate], catalysed C–H activation and subsequent conjugate addition of 2-phenylpyridine derivatives to enones in good yield and enantioselectivity (enantiomeric ratio up to 95:5). In addition to 2-phenylpyridines, the conjugate addition of 6-arylpurines proceeded with an enantiomeric ratio of up to 91:9 using [Cp*RhLN][(R)-SPISate]. The results demonstrate that a chiral organic anion can efficiently control the enantioselectivity of Cp*Rh(iii)-catalysed C–H bond functionalization without a chiral Cpx ligand.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Cp*Rh(iii) or CpxRh(iii)-catalysed asymmetric reactions.
Fig. 2: Preparation of [Cp*RhLN][(S)-BINSate] 2.
Fig. 3: Proposed catalytic cycle.

Change history

  • 03 January 2019

    In the version of this Article originally published, four important papers for transition metal/chiral anion asymmetric catalysis and 1,1'-binaphthyl-2,2'-disulfonate (BINSate) were erroneously omitted. These have now been added into the reference list at numbers 33, 43, 57 and 58, and the list renumbered accordingly:


  1. 1.

    Trost, B. M. The atom economy—a search for synthetic efficiency. Science 254, 1471–1477 (1991).

    CAS  Article  Google Scholar 

  2. 2.

    Wender, P. A. & Miller, B. L. Synthesis at the molecular frontier. Nature 460, 197–201 (2009).

    CAS  Article  Google Scholar 

  3. 3.

    Satoh, T. & Miura, M. Oxidative coupling of aromatic substrates with alkynes and alkenes under rhodium catalysis. Chem. Eur. J. 16, 11212–11222 (2010).

    CAS  Article  Google Scholar 

  4. 4.

    McMurray, L., O’Hara, F. & Gaunt, M. J. Recent developments in natural product synthesis using metal-catalysed C–H bond functionalisation. Chem. Soc. Rev. 40, 1885–1898 (2011).

    CAS  Article  Google Scholar 

  5. 5.

    Song, G., Wang, F. & Li, X. C–C, C–O and C–N bond formation via rhodium(III)-catalyzed oxidative C–H activation. Chem. Soc. Rev. 41, 3651–3678 (2012).

    CAS  Article  Google Scholar 

  6. 6.

    Kuhl, N., Schröder, N. & Glorius, F. Formal SN-type reactions in rhodium(III)-catalyzed C–H bond activation. Adv. Synth. Catal. 356, 1443–1460 (2014).

    CAS  Article  Google Scholar 

  7. 7.

    Song, G. & Li, X. Substrate activation strategies in rhodium(III)-catalyzed selective functionalization of arenes. Acc. Chem. Res. 48, 1007–1020 (2015).

    CAS  Article  Google Scholar 

  8. 8.

    Ye, B. & Cramer, N. Chiral cyclopentadienyls: enabling ligands for asymmetric Rh(III)-catalyzed C–H functionalizations. Acc. Chem. Res. 48, 1308–1318 (2015).

    CAS  Article  Google Scholar 

  9. 9.

    Moselage, M., Li, J. & Ackermann, L. Cobalt-catalyzed C–H activation. ACS Catal. 6, 498–525 (2016).

    CAS  Article  Google Scholar 

  10. 10.

    Gensch, T., Hopkinson, M. N., Glorius, F. & Wencel-Delord, J. Mild metal-catalyzed C–H activation: examples and concepts. Chem. Soc. Rev. 45, 2900–2936 (2016).

    CAS  Article  Google Scholar 

  11. 11.

    Yoshino, T. & Matsunaga, S. (Pentamethylcyclopentadienyl)cobalt(III)-catalyzed C–H bond functionalization: from discovery to unique reactivity and selectivity. Adv. Synth. Catal. 359, 1245–1262 (2017).

    CAS  Article  Google Scholar 

  12. 12.

    Wang, S., Chen, S.-Y. & Yu, X.-Q. C–H functionalization by high-valent Cp*Co(III) catalysis. Chem. Commun. 53, 3165–3180 (2017).

    CAS  Article  Google Scholar 

  13. 13.

    He, J., Wasa, M., Chan, K. S. L., Shao, Q. & Yu, J.-Q. Palladium-catalyzed transformations of alkyl C–H bonds. Chem. Rev. 117, 8754–8786 (2017).

    CAS  Article  Google Scholar 

  14. 14.

    Newton, C. G., Wang, S.-G., Oliveira, C. C. & Cramer, N. Catalytic enantioselective transformations involving C–H bond cleavage by transition-metal complexes. Chem. Rev. 117, 8908–8976 (2017).

    CAS  Article  Google Scholar 

  15. 15.

    Hummel, J. R., Boerth, J. A. & Ellman, J. A. Transition-metal-catalyzed C–H bond addition to carbonyls, imines, and related polarized π bonds. Chem. Rev. 117, 9163–9227 (2017).

    CAS  Article  Google Scholar 

  16. 16.

    Dong, Z., Ren, Z., Thompson, S. J., Xu, Y. & Dong, G. Transition-metal-catalyzed C–H alkylation using alkenes. Chem. Rev. 117, 9333–9403 (2017).

    CAS  Article  Google Scholar 

  17. 17.

    Ueura, K., Satoh, T. & Miura, M. Rhodium- and iridium-catalyzed oxidative coupling of benzoic acids with alkynes via regioselective C−H bond cleavage. J. Org. Chem. 72, 5362–5367 (2007).

    CAS  Article  Google Scholar 

  18. 18.

    Kang, T., Kim, Y., Lee, D., Wang, Z. & Chang, S. Iridium-catalyzed intermolecular amidation of sp3 C–H bonds: late-stage functionalization of an unactivated methyl group. J. Am. Chem. Soc. 136, 4141–4144 (2014).

    CAS  Article  Google Scholar 

  19. 19.

    Gwon, D., Park, S. & Chang, S. Dual role of carboxylic acid additive: mechanistic studies and implication for the asymmetric C–H amidation. Tetrahedron 71, 4504–4511 (2015).

    CAS  Article  Google Scholar 

  20. 20.

    Newton, C. G., Kossler, D. & Cramer, N. Asymmetric catalysis powered by chiral cyclopentadienyl ligands. J. Am. Chem. Soc. 138, 3935–3941 (2016).

    CAS  Article  Google Scholar 

  21. 21.

    Ye, B. & Cramer, N. Chiral cyclopentadienyl ligands as stereocontrolling element in asymmetric C–H functionalization. Science 338, 504–506 (2012).

    CAS  Article  Google Scholar 

  22. 22.

    Ye, B. & Cramer, N. A tunable class of chiral Cp ligands for enantioselective rhodium(III)-catalyzed C–H allylations of benzamides. J. Am. Chem. Soc. 135, 636–639 (2013).

    CAS  Article  Google Scholar 

  23. 23.

    Sun, Y. & Cramer, N. Rhodium(III)-catalyzed enantiotopic C−H activation enables access to P-chiral cyclic phosphinamides. Angew. Chem. Int. Ed. 56, 364–367 (2017).

    CAS  Article  Google Scholar 

  24. 24.

    Jang, Y. S., Dieckmann, M. & Cramer, N. Cooperative effects between chiral Cpx-iridium(III) catalysts and chiral carboxylic acids in enantioselective C−H amidations of phosphine oxides. Angew. Chem. Int. Ed. 56, 15088–15092 (2017).

    CAS  Article  Google Scholar 

  25. 25.

    Zheng, J., Cui, W.-J., Zheng, C. & You, S.-L. Synthesis and application of chiral spiro Cp ligands in rhodium-catalyzed asymmetric oxidative coupling of biaryl compounds with alkenes. J. Am. Chem. Soc. 138, 5242–5245 (2016).

    CAS  Article  Google Scholar 

  26. 26.

    Zheng, J., Wang, S.-B., Zheng, C. & You, S.-L. Asymmetric synthesis of spiropyrazolones by rhodium-catalyzed C(sp2)−H functionalization/annulation reactions. Angew. Chem. Int. Ed. 56, 4540–4544 (2017).

    CAS  Article  Google Scholar 

  27. 27.

    Jia, Z.-J. et al. General enantioselective C−H activation with efficiently tunable cyclopentadienyl ligands. Angew. Chem. Int. Ed. 56, 2429–2434 (2017).

    CAS  Article  Google Scholar 

  28. 28.

    Hyster, T. K., Knörr, L., Ward, T. R. & Rovis, T. Biotinylated Rh(III) complexes in engineered streptavidin for accelerated asymmetric C–H activation. Science 338, 500–503 (2012).

    CAS  Article  Google Scholar 

  29. 29.

    Kossler, D. & Cramer, N. Neutral chiral cyclopentadienyl Ru(II)Cl catalysts enable enantioselective [2+2]-cycloadditions. Chem. Sci. 8, 1862–1866 (2017).

    CAS  Article  Google Scholar 

  30. 30.

    Wang, S.-G., Park, S. H. & Cramer, N. A readily accessible class of chiral Cp ligands and their application in RuII-catalyzed enantioselective syntheses of dihydrobenzoindoles. Angew. Chem. Int. Ed. 57, 5459–5462 (2018).

    CAS  Article  Google Scholar 

  31. 31.

    Shao, Z. & Zhang, H. Combining transition metal catalysis and organocatalysis: a broad new concept for catalysis. Chem. Soc. Rev. 38, 2745–2755 (2009).

    CAS  Article  Google Scholar 

  32. 32.

    Phipps, R. J., Hamilton, G. L. & Toste, F. D. The progression of chiral anions from concepts to applications in asymmetric catalysis. Nat. Chem. 4, 603–614 (2012).

    CAS  Article  Google Scholar 

  33. 33.

    Mahlau, M. & List, B. Asymmetric counteranion‐directed catalysis: Concept, definition, and applications. Angew. Chem. Int. Ed. 52, 518–533 (2013).

    CAS  Article  Google Scholar 

  34. 34.

    Du, Z. & Shao, Z. Combining transition metal catalysis and organocatalysis—an update. Chem. Soc. Rev. 42, 1337–1378 (2013).

    CAS  Article  Google Scholar 

  35. 35.

    Inamdar, S. M., Shinde, V. S. & Patil, N. T. Enantioselective cooperative catalysis. Org. Biomol. Chem. 13, 8116–8162 (2015).

    CAS  Article  Google Scholar 

  36. 36.

    Qin, Y., Zhu, L. & Luo, S. Organocatalysis in inert C–H bond functionalization. Chem. Rev. 117, 9433–9520 (2017).

    CAS  Article  Google Scholar 

  37. 37.

    Smalley, A. P., Cuthbertson, J. D. & Gaunt, M. J. Palladium-catalyzed enantioselective C–H activation of aliphatic amines using chiral anionic binol-phosphoric acid ligands. J. Am. Chem. Soc. 139, 1412–1415 (2017).

    CAS  Article  Google Scholar 

  38. 38.

    Lapointe, D. & Fagnou, K. Overview of the mechanistic work on the concerted metallation–deprotonation pathway. Chem. Lett. 39, 1118–1126 (2010).

    Article  Google Scholar 

  39. 39.

    Davies, D. L., Macgregor, S. A. & McMullin, C. L. Computational studies of carboxylate-assisted C–H activation and functionalization at group 8–10 transition metal centers. Chem. Rev. 117, 8649–8709 (2017).

    CAS  Article  Google Scholar 

  40. 40.

    Chai, Z. & Rainey, T. J. Pd(II)/Brønsted acid catalyzed enantioselective allylic C–H activation for the synthesis of spirocyclic rings. J. Am. Chem. Soc. 134, 3615–3618 (2012).

    CAS  Article  Google Scholar 

  41. 41.

    Wang, P.-S., Lin, H.-C., Zhai, Y.-J., Han, Z.-Y. & Gong, L.-Z. Chiral counteranion strategy for asymmetric oxidative C(sp3)–H/C(sp3)–H coupling: enantioselective α-allylation of aldehydes with terminal alkenes. Angew. Chem. Int. Ed. 53, 12218–12221 (2014).

    CAS  Article  Google Scholar 

  42. 42.

    Zell, D., Bursch, M., Müller, V., Grimme, S. & Ackermann, L. Full selectivity control in cobalt(III)‐catalyzed C−H alkylations by switching of the C−H activation mechanism. Angew. Chem. Int. Ed. 56, 10378–10382 (2017).

    CAS  Article  Google Scholar 

  43. 43.

    Pan, S.C. & List, B. The catalytic acylcyanation of imines. Chem. Asian J. 3, 430–437 (2008).

    CAS  Article  Google Scholar 

  44. 44.

    Hatano, M., Maki, T., Moriyama, K., Arinobe, M. & Ishihara, K. Pyridinium 1,1’-binaphthyl-2,2’-disulfonates as highly effective chiral Brønsted acid–base combined salt catalysts for enantioselective Mannich-type reaction. J. Am. Chem. Soc. 130, 16858–16860 (2008).

    CAS  Article  Google Scholar 

  45. 45.

    Hatano, M. & Ishihara, K. Chiral 1,1′-binaphthyl-2,2′-disulfonic acid (BINSA) and its derivatives for asymmetric catalysis. Asian J. Org. Chem. 3, 352–365 (2014).

    CAS  Article  Google Scholar 

  46. 46.

    Jerphagnon, T., Pizzuti, M. G., Minnaard, A. J. & Feringa, B. L. Recent advances in enantioselective copper-catalyzed 1,4-addition. Chem. Soc. Rev. 38, 1039–1075 (2009).

    CAS  Article  Google Scholar 

  47. 47.

    Edwards, H. J., Hargrave, J. D., Penrose, S. D. & Frost, C. G. Synthetic applications of rhodium catalysed conjugate addition. Chem. Soc. Rev. 39, 2093–2105 (2010).

    CAS  Article  Google Scholar 

  48. 48.

    Yang, L., Correia, C. A. & Li, C.-J. Rhodium-catalyzed C–H activation and conjugate addition under mild conditions. Org. Biomol. Chem. 9, 7176–7179 (2011).

    CAS  Article  Google Scholar 

  49. 49.

    Yang, L., Qian, B. & Huang, H. Brønsted acid enhanced rhodium-catalyzed conjugate addition of aryl C–H bonds to α,β-unsaturated ketones under mild conditions. Chem. Eur. J. 18, 9511–9515 (2012).

    CAS  Article  Google Scholar 

  50. 50.

    Potter, T. J., Kamber, D. N., Mercado, B. Q. & Ellman, J. A. Rh(III)-catalyzed aryl and alkenyl C–H bond addition to diverse nitroalkenes. ACS Catal. 7, 150–153 (2017).

    CAS  Article  Google Scholar 

  51. 51.

    Yoshino, T., Ikemoto, H., Matsunaga, S. & Kanai, M. A cationic high-valent Cp*CoIII complex for the catalytic generation of nucleophilic organometallic species: directed C–H bond activation. Angew. Chem. Int. Ed. 52, 2207–2211 (2013).

    CAS  Article  Google Scholar 

  52. 52.

    Li, J. et al. Mild cobalt(III)-catalyzed C–H hydroarylation of conjugated C=C/C=O bonds. Adv. Synth. Catal. 359, 1717–1724 (2017).

    CAS  Article  Google Scholar 

  53. 53.

    Zhang, Z., Han, S., Tang, M., Ackermann, L. & Li, J. C–H alkylations of (hetero)arenes by maleimides and maleate esters through cobalt(III) catalysis. Org. Lett. 19, 3315–3318 (2017).

    CAS  Article  Google Scholar 

  54. 54.

    Kim, H. J. et al. Hydrogen-bond-assisted controlled C–H functionalization via adaptive recognition of a purine directing group. J. Am. Chem. Soc. 136, 1132–1140 (2014).

    CAS  Article  Google Scholar 

  55. 55.

    Kurihara T. et al. Synthesis of 1,1′-spirobiindane-7,7′-disulfonic acid and disulfonimide: application for catalytic asymmetric aminalization. Chem. Asian J. (2018).

  56. 56.

    Hamilton, G. L., Kang, E. J., Mba, M. & Toste, F. D. A powerful chiral counterion strategy for asymmetric transition metal catalysis. Science 317, 496–499 (2007).

    CAS  Article  Google Scholar 

  57. 57.

    Mukherjee, S. & List, B. Chiral counteranions in asymmetric transition-metal catalysis: Highly enantioselective Pd/Brønsted acid-catalyzed direct α-allylation of aldehydes. J. Am. Chem. Soc. 129, 11336–11337 (2007).

    CAS  Article  Google Scholar 

  58. 58.

    Mayer, S. & List, B. Asymmetric counteranion-directed catalysis. Angew. Chem. Int. Ed. 45, 4193–4195 (2006).

    CAS  Article  Google Scholar 

Download references


This work was supported in part by JST ACT-C grant number JPMJCR12Z6, Japan, JSPS KAKENHI grant numbers JP15H05802 and JP15H05810 in Precisely Designed Catalysts with Customized Scaffolding, JSPS KAKENHI grant number JP18H04637 in Hybrid Catalysis, JSPS KAKENHI grant number JP17K15417, and The Asahi Glass Foundation and Astellas Foundation (to S.M.). We thank J. Hasegawa at Hokkaido University for fruitful discussion on the reaction mechanism.

Author information




S.S., T.K., K.N., T.M. and T.Y. performed the experiments and analysed the data. S.S., M.H., K.I., T.Y. and S.M. conceived and designed the experiments and prepared the manuscript. All authors contributed to discussions and commented on the manuscript.

Corresponding authors

Correspondence to Tatsuhiko Yoshino or Shigeki Matsunaga.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Information

Supplementary Methods, Supplementary Figures 1–64, Supplementary References

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Satake, S., Kurihara, T., Nishikawa, K. et al. Pentamethylcyclopentadienyl rhodium(III)–chiral disulfonate hybrid catalysis for enantioselective C–H bond functionalization. Nat Catal 1, 585–591 (2018).

Download citation

Further reading


Quick links