Synthesis of reaction‐adapted zeolites as methanol-to-olefins catalysts with mimics of reaction intermediates as organic structure‐directing agents


Catalysis with enzymes and zeolites have in common the presence of well-defined single active sites and pockets/cavities where the reaction transition states can be stabilized by longer-range interactions. We show here that for a complex reaction, such as the conversion of methanol-to-olefins (MTO), it is possible to synthesize reaction-adapted zeolites by using mimics of the key molecular species involved in the MTO mechanism. Effort has focused on the intermediates of the paring mechanism because the paring is less favoured energetically than the side-chain route. All the organic structure-directing agents based on intermediate mimics crystallize cage-based small-pore zeolitic materials, all of them capable of performing the MTO reaction. Among the zeolites obtained, RTH favours the whole reaction steps following the paring route and gives the highest propylene/ethylene ratio compared to traditional CHA-related zeolites (3.07 and 0.86, respectively).

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: MTO mechanisms.
Fig. 2: OSDA mimics and zeolites.
Fig. 3: Hydrocarbon species.
Fig. 4: Minimization of MTO intermediates within zeolite cavities.
Fig. 5: Energy profiles for the paring routes.


  1. 1.

    Stocker, M. Methanol-to-hydrocarbons: catalytic materials and their behavior. Micro. Mesopor. Mater. 29, 3–48 (1999).

    Article  CAS  Google Scholar 

  2. 2.

    Tian, P., Wei, Y., Ye, M. & Liu, Z. Methanol to olefins (MTO): from fundamentals to commercialization. ACS Catal. 5, 1922–1938 (2015).

    Article  CAS  Google Scholar 

  3. 3.

    Ilias, S. & Bhan, A. Mechanism of the catalytic conversion of methanol to hydrocarbons. ACS Catal. 3, 18–31 (2013).

    Article  CAS  Google Scholar 

  4. 4.

    Olsbye, U. et al. Conversion of methanol to hydrocarbons: how zeolite cavity and pore size controls product selectivity. Angew. Chem. Int. Ed. 24, 5810–5831 (2012).

    Article  CAS  Google Scholar 

  5. 5.

    Hemelsoet, K., Van der Mynsbrugge, J., De Wispelaere, K., Waroquier, M. & Van Speybroeck, V. Unraveling the reaction mechanisms governing methanol-to-olefins catalysis by theory and experiment. ChemPhysChem 14, 1526–1545 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. 6.

    Song, W., Haw, J. F., Nicholas, J. B. & Heneghan, C. S. Methylbenzenes are the organic reaction centers for methanol-to-olefin catalysis on HSAPO-34. J. Am. Chem. Soc. 122, 10726–10727 (2000).

    Article  CAS  Google Scholar 

  7. 7.

    Arstad, B. & Kolboe, S. The reactivity of molecules trapped within the SAPO-34 cavities in the methanol-to-hydrocarbons reaction. J. Am. Chem. Soc. 123, 8137–8138 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. 8.

    Xu, T. et al. Synthesis of a benzenium ion in a zeolite with use of a catalytic flow reactor. J. Am. Chem. Soc. 120, 4025–4026 (1998).

    Article  CAS  Google Scholar 

  9. 9.

    Song, W., Nicholas, J. B., Sassi, A. & Haw, J. F. Synthesis of the heptamethylbenzene cation in zeolite beta: in situ NMR and theory. Catal. Lett. 81, 49–53 (2002).

    Article  CAS  Google Scholar 

  10. 10.

    Xu, S. et al. Direct observation of cyclic carbenium ions and their role in the catalytic cycle of the metahnol-to-olefin reaction over chabazite zeolites. Angew. Chem. Int. Ed. 52, 11564–11568 (2013).

    Article  CAS  Google Scholar 

  11. 11.

    Chen, J. et al. Elucidating the olefin formation mechanism in the methanol to olefin reaction over AlPO-18 and SAPO-18. Catal. Sci. Tech. 4, 3268–3277 (2014).

    Article  CAS  Google Scholar 

  12. 12.

    Haw, J. F. et al. Roles for cyclopentenyl cations in the synthesis of hydrocarbons from methanol on zeolite catalyst HZSM-5. J. Am. Chem. Soc. 122, 4763–4775 (2000).

    Article  CAS  Google Scholar 

  13. 13.

    Svelle, S. et al. Conversion of methanol into hydrocarbons over zeolite H-ZSM-5: ethene formation is mechanistically separated from the formation of higher alkenes. J. Am. Chem. Soc. 128, 14770–14771 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. 14.

    Teketel, S., Olsbye, U., Lillerud, K. P., Beato, P. & S., S. Selectivity control through fundamental mechanistic insight in the conversion of methanol to hydrocarbons over zeolites. Micro. Mesopor. Mater. 136, 33–41 (2010).

    Article  CAS  Google Scholar 

  15. 15.

    Zhang, M. et al. Methanol conversion on ZSM-22, ZSM-35 and ZSM-5 zeolites: effects of 10-membered ring zeolite structures on methylcyclopentenyl cations and dual cycle mechanism. RSC Adv. 6, 95855–95864 (2016).

    Article  CAS  Google Scholar 

  16. 16.

    Sassi, A. et al. Methylbenzene chemistry on zeolite HBeta: multiple insights into methanol-to-olefin catalysis. J. Phys. Chem. B 106, 2294–2303 (2002).

    Article  CAS  Google Scholar 

  17. 17.

    Sassi, A., Wildman, M. A. & Haw, J. F. Reactions of butylbenzene isomers on zeolite HBeta: methanol-to-olefins hydrocarbon pool chemistry and secondary reactions of olefins. J. Phys. Chem. B 106, 8768–8773 (2002).

    Article  CAS  Google Scholar 

  18. 18.

    Bjørgen, M., Olsbye, U., Petersen, D. & Kolboe, S. The methanol-to-hydrocarbons reaction: insight into the reaction mechanism from [12C]benzene and [13C]methanol coreactions over zeolite H-beta. J. Catal. 221, 1–10 (2004).

    Article  CAS  Google Scholar 

  19. 19.

    McCann, D. M. et al. A complete catalytic cycle for supramolecular methanol-to-olefins conversion by linking theory with experiment. Angew. Chem. Int. Ed. 47, 5179–5182 (2008).

    Article  CAS  Google Scholar 

  20. 20.

    Arstad, B., Kolboe, S. & Swang, O. Theoretical study of the heptamethylbenzenium ion. intramolecular isomerizations and C2, C3, C4 alkene elimination. J. Phys. Chem. A 109, 8914–8922 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. 21.

    De Wispelaere, K., Hemelsoet, K., Waroquier, M. & Van Speybroeck, V. Complete low-barrier side-chain route for olefin formation during methanol conversion in H-SAPO-34. J. Catal. 305, 76–80 (2013).

    Article  CAS  Google Scholar 

  22. 22.

    Wang, C. M., Wang, Y. D. & Xie, Z. K. Verification of the dual cycle mechanism for methanol-to-olefin conversion in HSAPO-34: a methylbenzene-based cycle from DFT calculations. Catal. Sci. Technol. 4, 2631–2638 (2014).

    Article  CAS  Google Scholar 

  23. 23.

    Wang, C. M., Wang, Y. D., Liu, H. X., Xie, Z. K. & Liu, Z. P. Theoretical insight into the minor role of paring mechanism in the methanol-to-olefins conversion within HSAPO-34 catalyst. Micro. Mesopor. Mater. 158, 264–271 (2012).

    Article  CAS  Google Scholar 

  24. 24.

    Ilias, S. & Bhan, A. The mechanism of aromatic dealkylation in methanol-to-hydrocarbons conversion on H-ZSM-5: What are the aromatic precursors to light olefins? J. Catal. 311, 6–16 (2014).

    Article  CAS  Google Scholar 

  25. 25.

    Erichsen, M. W. et al. Conclusive evidence for two unimolecular pathways to zeolite-catalyzed de-alkylation of the heptamethylbenzenium cation. ChemCatChem 7, 4143–4147 (2015).

    Article  CAS  Google Scholar 

  26. 26.

    Bhawe, Y. et al. Effect of cage size on the selective conversion of methanol to light olefins. ACS Catal. 2, 2490–2495 (2012).

    Article  CAS  Google Scholar 

  27. 27.

    Kang, J. H. et al. Further studies on how the nature of zeolite cavities that are bounded by small pores influences the conversion of methanol to light olefins. ChemPhysChem 19, 412–419 (2018).

    Article  CAS  PubMed  Google Scholar 

  28. 28.

    Martin, N. et al. Nanocrystalline SSZ-39 zeolite as an efficient catalyst for the methanol-to-olefin (MTO) process. Chem. Commun. 52, 6072–6075 (2016).

    Article  CAS  Google Scholar 

  29. 29.

    Dusselier, M., Deimund, M. A., Schmidt, J. E. & Davis, M. E. Methanol-to-olefins catalysis with hydrothermally treated zeolite SSZ-39. ACS Catal. 5, 6078–6085 (2015).

    Article  CAS  Google Scholar 

  30. 30.

    Yokoi, T., Yoshioka, M., Imai, H. & Tatsumi, T. Diversification of RTH-type zeolite and its catalytic application. Angew. Chem. Int. Ed. 48, 9884–9887 (2009).

    Article  CAS  Google Scholar 

  31. 31.

    Ji, Y., Deimund, M. A., Bhawe, Y. & Davis, M. E. Organic-free synthesis of CHA-type zeolite catalysts for the methanol-to-olefins reaction. ACS Catal. 5, 4456–4465 (2015).

    Article  CAS  Google Scholar 

  32. 32.

    Liu, M. et al. Differences in Al distribution and acidic properties between RTH-type zeolites synthesized with OSDAs and without OSDAs. Phys. Chem. Chem. Phys. 16, 4155–4164 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. 33.

    Gallego, E. M. et al. “Ab initio” synthesis of zeolites for preestablished catalytic reactions. Science 355, 1051–1054 (2017).

    Article  CAS  PubMed  Google Scholar 

  34. 34.

    Zones, S. I. & Nakagawa, Y. Use of modified zeolites as reagents influencing nucleation in zeolite synthesis. Stud. Surf. Sci. Catal. 97, 45–52 (1995).

    Article  CAS  Google Scholar 

  35. 35.

    Li, C., Moliner, M. & Corma, A. Building zeolites from pre-crystallized units: nanoscale architecture. Angew. Chem. Int. Ed. (2018).

  36. 36.

    Zones, S. I. Zeolite SSZ-13 and its method of preparation. US Patent 4,544,538 (1985).

  37. 37.

    Li, Z., Navarro, M. T., Martínez-Triguero, J., Yu, J. & Corma, A. Synthesis of nano-SSZ-13 and its application in the reaction of methanol to olefins. Catal. Sci. Technol. 6, 5856–5863 (2016).

    Article  CAS  Google Scholar 

  38. 38.

    Kumar, M., Luo, H., Román-Leshkov, Y. & Rimer, J. D. SSZ-13 crystallization by particle attachment and deterministic pathways to crystal size control. J. Am. Chem. Soc. 137, 13007–13017 (2015).

    Article  CAS  PubMed  Google Scholar 

  39. 39.

    Martínez-Franco, R., Cantin, A., Moliner, M. & Corma, A. Synthesis of the small pore silicoaluminophosphate STA-6 by using supramolecular self-assembled organic structure directing agents. Chem. Mater. 26, 4346–4353 (2014).

    Article  CAS  Google Scholar 

  40. 40.

    Schmidt, J. E., Deimund, M. A., Xie, D. & Davis, M. E. Synthesis of RTH-type zeolites using a diverse library of imidazolium cations. Chem. Mater. 27, 3756–3762 (2015).

    Article  CAS  Google Scholar 

  41. 41.

    Moliner, M., Franch, C., Palomares, E., Grill, M. & Corma, A. Cu–SSZ-39, an active and hydrothermally stable catalyst for the selective catalytic reduction of NOx. Chem. Commun. 48, 8264–8266 (2012).

    Article  CAS  Google Scholar 

  42. 42.

    Zhao, Y. & Truhlar, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 120, 215–241 (2008).

    Article  CAS  Google Scholar 

  43. 43.

    Ditchfield, R., Hehre, W. J. & Pople, J. A. Self-consistent molecular orbital methods. 9. Extended Gaussian-type basis for molecular-orbital studies of organic molecules. J. Chem. Phys. 54, 724–728 (1971).

    Article  CAS  Google Scholar 

  44. 44.

    Hehre, W. J., Ditchfield, R. & Pople, J. A. Self-consistent molecular orbital methods. 12. Further extensions of Gaussian-type basis sets for use in molecular-orbital studies of organic-molecules. J. Chem. Phys. 56, 2257–2261 (1972).

    Article  CAS  Google Scholar 

  45. 45.

    Frisch, M. J. et al. Gaussian 09, Revision C.01. (Gaussian, Wallingford, 2009).

  46. 46.

    Van Speybroeck, V. et al. First principle chemical kinetics in zeolites: the methanol-to-olefin process as a case study. Chem. Soc. Rev. 43, 7326–7357 (2014).

    Article  PubMed  Google Scholar 

Download references


This work was supported by the European Union through ERC-AdG-2014-671093 (SynCatMatch), the Spanish Government-MINECO through Severo Ochoa (SEV-2016-0683) and MAT2015-71261-R. The Electron Microscopy Service of the Universitat Politècnica de València (UPV) is acknowledged for their help in sample characterization. C.L. acknowledges the China Scholarship Council for a PhD fellowship.

Author information




A.C. conceived and directed the project. M.M. and A.C. designed the synthesis and M.M. directed the zeolite synthesis work. C.P. carried out the synthesis of the organic molecules. C.L. performed the zeolite synthesis. C.L. and J.M.-T. performed the MTO catalytic experiments. M.B. carried out the theoretical calculations. M.M., M.B. and A.C. wrote the manuscript. C.L., C.P., J.M.-T., M.B., M.M. and A.C. participated in the discussion and interpretation of the experimental data.

Corresponding author

Correspondence to Avelino Corma.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–24, Supplementary Tables 1–6, Supplementary Methods, Supplementary References

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, C., Paris, C., Martínez-Triguero, J. et al. Synthesis of reaction‐adapted zeolites as methanol-to-olefins catalysts with mimics of reaction intermediates as organic structure‐directing agents. Nat Catal 1, 547–554 (2018).

Download citation

Further reading


Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing