Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Bridging homogeneous and heterogeneous catalysis by heterogeneous single-metal-site catalysts

A Publisher Correction to this article was published on 11 February 2019

This article has been updated

Abstract

In heterogeneous single-metal-site catalysts (HSMSCs) the active metal centres are located individually on a support and are stabilized by neighbouring surface atoms such as nitrogen, oxygen or sulfur. Modern characterization techniques allow the identification of these individual metal atoms on a given support, and the resulting materials are often referred as single-atom catalysts. Their electronic properties and catalytic activity are tuned by the interaction between the central metal and the neighbouring surface atoms, and their atomically dispersed nature allows for metal utilization of up to 100%. In this way, HSMSCs provide new opportunities for catalysis, and with respect to structure build a bridge between homogeneous and heterogeneous catalysis. Herein, selected publications from 2010 in this area are reviewed and their perspectives for the near future are highlighted. Where appropriate, comparisons between HSMSCs and homogeneous/heterogeneous counterparts are presented.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Building a bridge between heterogeneous and homogeneous catalysis.
Fig. 2: Plot of particle size versus percentage of atoms located on the surface of the particle.
Fig. 3: Schematic illustration of methods to modify the interaction of metal–support to prepare HSMSCs.
Fig. 4: Characterization of single platinum site catalysts supported on Al2O3-nanorods.
Fig. 5: Comparison of heterogeneous catalysis.

Similar content being viewed by others

Change history

  • 11 February 2019

    In the version of this Review originally published, the titles of Table 1 and Table 3 were mistakenly swapped. The title for Table 1 should be “Single Pt site catalysed selective hydrosilylation of various olefins”, and the title for Table 3 should be “Synthesis and applications of single-metal-site catalysts”. These errors have now been amended.

References

  1. Baleizao, C. & Garcia, H. Chiral salen complexes: an overview to recoverable and reusable homogeneous and heterogeneous catalysts. Chem. Rev. 106, 3987–4043 (2006).

    CAS  PubMed  Google Scholar 

  2. Xia, Q. H., Ge, H. Q., Ye, C. P., Liu, Z. M. & Su, K. X. Advances in homogeneous and heterogeneous catalytic asymmetric epoxidation. Chem. Rev. 105, 1603–1662 (2005).

    CAS  PubMed  Google Scholar 

  3. Adam, W., Saha-Moller, C. R. & Ganeshpure, P. A. Synthetic applications of nonmetal catalysts for homogeneous oxidations. Chem. Rev. 101, 3499–3548 (2001).

    CAS  PubMed  Google Scholar 

  4. Fechete, I., Wang, Y. & Vedrine, J. C. The past, present and future of heterogeneous catalysis. Catal. Today 189, 2–27 (2012).

    CAS  Google Scholar 

  5. Gross, E. & Somorjai, G. A. Mesoscale nanostructures as a bridge between homogeneous and heterogeneous catalysis. Top. Catal. 57, 812–821 (2014).

    CAS  Google Scholar 

  6. Sandra Hübner, S., de Vries, J. G. & Farina, V. Why does industry not use immobilized transition metal complexes as catalysts. Adv. Synth. Catal. 358, 3–25 (2016).

    Google Scholar 

  7. Anantharaj, S., Jayachandran, M. & Kundu, S. Unprotected and interconnected Ru0 nano-chain networks: advantages of unprotected surfaces in catalysis and electrocatalysis. Chem. Sci. 7, 3188–3205 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. He, J. T. et al. Strategy for nano-catalysis in a fixed-bed system. Adv. Mater. 26, 4151–4155 (2014).

    CAS  PubMed  Google Scholar 

  9. Zhang, Y., Cui, X. J., Shi, F. & Deng, Y. Q. Nano-gold catalysis in fine chemical synthesis. Chem. Rev. 112, 2467–2505 (2012).

    CAS  PubMed  Google Scholar 

  10. Shi, F. et al. Tuning catalytic activity between homogeneous and heterogeneous catalysis: improved activity and selectivity of free nano-Fe2O3 in selective oxidations. Angew. Chem. Int. Ed. 46, 8866–8868 (2007).

    CAS  Google Scholar 

  11. Chaturvedi, S., Dave, P. N. & Shah, N. K. Applications of nano-catalyst in new era. J. Saudi. Chem. Soc. 16, 307–325 (2012).

    CAS  Google Scholar 

  12. Yang, X. F. et al. Single-atom catalysts: a new frontier in heterogeneous catalysis. Acc. Chem. Res. 46, 1740–1748 (2013).

    CAS  PubMed  Google Scholar 

  13. Liu, J. Y. Catalysis by supported single-metal atoms. ACS Catal. 7, 34–59 (2017).

    CAS  Google Scholar 

  14. Zhang, W. & Zheng, W. T. Single atom excels as the smallest functional material. Adv. Funct. Mater. 26, 2988–2993 (2016).

    CAS  Google Scholar 

  15. Liang, S. X., Hao, C. & Shi, Y. T. The power of single-atom catalysis. ChemCatChem 7, 2559–2567 (2015).

    CAS  Google Scholar 

  16. Qiao, B. T. et al. Single-atom catalysis of CO oxidation using Pt1/FeOx.Nat. Chem. 3, 634–641 (2011).The first practical Pt single site catalyst on FeO x was fabricated and displayed high activity and stability for both CO oxidation and preferential oxidation of CO in H 2.

    CAS  PubMed  Google Scholar 

  17. Wei, H. S. et al. FeOx-supported platinum single-atom and pseudo-single-atom catalysts for chemoselective hydrogenation of functionalized nitroarenes. Nat. Commun. 5, 5634 (2014).

    CAS  PubMed  Google Scholar 

  18. Chen, Z. P. et al. Stabilization of single metal atoms on graphitic carbon nitride. Adv. Funct. Mater. 27 (2017).

  19. Liu, J. L. et al. Tackling CO poisoning with single-atom alloy catalysts. J. Am. Chem. Soc. 138, 6396–6399 (2016).

    CAS  PubMed  Google Scholar 

  20. Lucci, F. R. et al. Selective hydrogenation of 1,3-butadiene on platinum-copper alloys at the single-atom limit. Nat. Commun. 6, 8550 (2015).

    PubMed  Google Scholar 

  21. Aydin, C., Kulkarni, A., Chi, M. F., Browning, N. D. & Gates, B. C. Three-dimensional structural analysis of MgO-supported osmium clusters by electron microscopy with single-atom sensitivity. Angew. Chem. Int. Ed. 52, 5262–5265 (2013).

    CAS  Google Scholar 

  22. Kistler, J. D. et al. single-site platinum CO oxidation catalyst in zeolite KLTL: microscopic and spectroscopic determination of the locations of the platinum atoms. Angew. Chem. Int. Ed. 53, 8904–8907 (2014).

    CAS  Google Scholar 

  23. Ortalan, V., Uzun, A., Gates, B. C. & Browning, N. D. Direct imaging of single metal atoms and clusters in the pores of dealuminated HY zeolite. Nat. Nanotechnol. 5, 506–510 (2010).

    CAS  PubMed  Google Scholar 

  24. O’Neill, B. J. et al. Catalyst design with atomic layer deposition. ACS Catal. 5, 1804–1825 (2015).

    Google Scholar 

  25. Sun, S. H. et al. Single-atom catalysis using Pt/graphene achieved through atomic layer deposition. Sci. Rep. 3 (2013).

  26. Yang, S., Kim, J., Tak, Y. J., Soon, A. & Lee, H. single-atom catalyst of platinum supported on titanium nitride for selective electrochemical reactions. Angew. Chem. Int. Ed. 55, 2058–2062 (2016).

    CAS  Google Scholar 

  27. Zhang, B. et al. Stabilizing a platinum1 single-atom catalyst on supported phosphomolybdic acid without compromising hydrogenation activity. Angew. Chem. Int. Ed. 55, 8319–8323 (2016).

    CAS  Google Scholar 

  28. Li, X. G. et al. Single-atom Pt as Co-catalyst for enhanced photocatalytic H2 evolution. Adv. Mater. 28, 2427–2431 (2016).The isolated single Pt atoms was successfully stabilized on 2D g-C 3 N 4 and 100% utilization of the the atom leads to highly efficient photocatalytic activity for H 2 evolution.

    CAS  PubMed  Google Scholar 

  29. Yang, S., Tak, Y. J., Kim, J., Soon, A. & Lee, H. Support effects in single-atom platinum catalysts for electrochemical oxygen reduction. ACS Catal. 7, 1301–1307 (2017).

    CAS  Google Scholar 

  30. Yang, M., Allard, L. F. & Flytzani-Stephanopoulos, M. Atomically dispersed Au-(OH)x species bound on titania catalyze the low-temperature water-gas shift reaction. J. Am. Chem. Soc. 135, 3768–3771 (2013).

    CAS  PubMed  Google Scholar 

  31. Liu, P. X. et al. Photochemical route for synthesizing atomically dispersed palladium catalysts. Science 352, 797–801 (2016).The atomically dispersed Pd catalyst on ultrathin TiO 2 nanosheets was prepared under ultraviolet light and exhibited high catalytic activities and stabilities in hydrogenation of C=C and C=O.

    CAS  PubMed  Google Scholar 

  32. Wang, Z. M. et al. Stabilizing single Ni adatoms on a two-dimensional porous titania over layer at the SrTiO3(110) surface. J. Phys. Chem. C. 118, 19904–19909 (2014).

    CAS  Google Scholar 

  33. Guo, X. G. et al. Direct, nonoxidative conversion of methane to ethylene, aromatics, and hydrogen. Science 344, 616–619 (2014).

    CAS  PubMed  Google Scholar 

  34. Huang, Z. W. et al. Catalytically active single-atom sites fabricated from silver particles. Angew. Chem. Int. Ed. 51, 4198–4203 (2012).

    CAS  Google Scholar 

  35. Jones, J. et al. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science 353, 150–154 (2016).

    CAS  PubMed  Google Scholar 

  36. Genna, D. T., Wong-Foy, A. G., Matzger, A. J. & Sanford, M. S. Heterogenization of homogeneous catalysts in metal–organic frameworks via cation exchange. J. Am. Chem. Soc. 135, 10586–10589 (2013).

    CAS  PubMed  Google Scholar 

  37. Terry, T. J. & Stack, T. D. P. Covalent heterogenization of a discrete Mn(II) bis-phen complex by a metal-template/metal-exchange method: An epoxidation catalyst with enhanced reactivity. J. Am. Chem. Soc. 130, 4945–4953 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Pelletier, J. D. A. & Basset, J. M. Catalysis by design: well-defined single-site heterogeneous catalysts. Acc. Chem. Res. 49, 664–677 (2016).

    CAS  PubMed  Google Scholar 

  39. Coperet, C. et al. Surface organometallic and coordination chemistry toward single-site heterogeneous catalysts: strategies, methods, structures, and activities. Chem. Rev. 116, 323–421 (2016).

    CAS  PubMed  Google Scholar 

  40. Delley, M. F. et al. Local structures and heterogeneity of silica-supported M(III) sites evidenced by EPR, IR, NMR, and luminescence spectroscopies. J. Am. Chem. Soc. 139, 8855–8867 (2017).

    CAS  PubMed  Google Scholar 

  41. Merle, N. et al. Well-defined molybdenum oxo alkyl complex supported on silica by surface organometallic chemistry: a highly active olefin metathesis precatalyst. J. Am. Chem. Soc. 139, 2144–2147 (2017).

    CAS  PubMed  Google Scholar 

  42. Zhang, H. B. et al. Efficient visible-light-driven carbon dioxide reduction by a single-atom implanted metal-organic framework. Angew. Chem. Int. Ed. 55, 14308–14312 (2016).

    Google Scholar 

  43. Wu, H. H. et al. Highly doped and exposed Cu(I)–N active sites within graphene towards efficient oxygen reduction for zinc-air batteries. Energy Environ. Sci. 9, 3736–3745 (2016).

    CAS  Google Scholar 

  44. Zhao, J., Deng, Q. M., Avdoshenko, S. M., Fu, L., Eckert, J. & Ruemmeli, M. H. Direct in situ observations of single Fe atom catalytic processes and anomalous diffusion at graphene edges. Proc. Natl Acad. Sci. USA 111, 15641–15646 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Fei, H. L. et al. Atomic cobalt on nitrogen-doped graphene for hydrogen generation. Nat. Commun. 6, 8668 (2015).

    CAS  PubMed  Google Scholar 

  46. Liu, W. G. et al. Single-atom dispersed Co-N-C catalyst: structure identification and performance for hydrogenative coupling of nitroarenes. Chem. Sci. 7, 5758–5764 (2016).The isolated Co site catalyst was successful synthesized by pyrolysis of Co-phen complex and the resulting material displayed good reactivity on preparation of azo products by the hydrogrenation of nitrobenzenes.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhang, L. L. et al. Co-N-C catalyst for C-C coupling reactions: on the catalytic performance and active sites. ACS Catal. 5, 6563–6572 (2015).

    CAS  Google Scholar 

  48. Hu, P. P. et al. Electronic metal- support interactions in single-atom catalysts. Angew. Chem. Int. Ed. 53, 3418–3421 (2014).

    CAS  Google Scholar 

  49. Kwak, J. H. et al. Coordinatively unsaturated Al3 + centers as binding sites for active catalyst phases of platinum on gamma-Al2O3. Science 325, 1670–1673 (2009).

    CAS  PubMed  Google Scholar 

  50. Tang, Y., Zhao, S., Long, B., Liu, J. C. & Li, J. On the nature of support effects of metal dioxides MO2 (M = Ti, Zr, Hf, Ce, Th) in single-atom gold catalysts: importance of quantum primogenic effect. J. Phys. Chem. C. 120, 17514–17526 (2016).

    CAS  Google Scholar 

  51. Ma, X. D., An, Z., Zhu, Y. R., Wang, W. L. & He, J. Pseudo-single-atom platinum induced by the promoter confined in brucite-like lattice for catalytic reforming. ChemCatChem 8, 1773–1777 (2016).

    CAS  Google Scholar 

  52. Ketabi, N. et al. How functional groups change the electronic structure of graphdiyne: theory and experiment. Carbon 123, 1–6 (2017).

    CAS  Google Scholar 

  53. Mahmoodinia, M., Astrand, P. O. & Chen, D. Tuning the electronic properties of single-atom Pt catalysts by functionalization of the carbon support material. J. Phys. Chem. C. 121, 20802–20812 (2017).

    CAS  Google Scholar 

  54. Kim, Y. T., Uruga, T. & Mitani, T. Formation of single Pt atoms on thiolated carbon nanotubes using a moderate and large-scale chemical approach. Adv. Mater. 18, 2634–2638 (2006).

    CAS  Google Scholar 

  55. He, P. L., Xu, B. A., Xu, X. B., Song, L. & Wang, X. Surfactant encapsulated palladium-polyoxometalates: controlled assembly and their application as single-atom catalysts. Chem. Sci. 7, 1011–1015 (2016).

    CAS  PubMed  Google Scholar 

  56. Addou, R. et al. Influence of hydroxyls on Pd atom mobility and clustering on rutile TiO2(011)-2 x 1. ACS Nano 8, 6321–6333 (2014).

    CAS  PubMed  Google Scholar 

  57. Fan, L. L. et al. Atomically isolated nickel species anchored on graphitized carbon for efficient hydrogen evolution electrocatalysis. Nat. Commun. 7, 10667 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. van Benthem, K., Bonifacio, C. S., Contescu, C. I., Gallego, N. C. & Pennycook, S. J. STEM imaging of single Pd atoms in activated carbon fibers considered for hydrogen storage. Carbon 49, 4059–4063 (2011).

    Google Scholar 

  59. Matsubu, J. C., Yang, V. N. & Christopher, P. Isolated metal active site concentration and stability control catalytic CO2 reduction selectivity. J. Am. Chem. Soc. 137, 3076–3084 (2015).

    CAS  PubMed  Google Scholar 

  60. Ding, K. et al. Identification of active sites in CO oxidation and water-gas shift over supported Pt catalysts. Science 350, 189–192 (2015).

    CAS  PubMed  Google Scholar 

  61. Guo, Z. et al. Recent advances in heterogeneous selective oxidation catalysis for sustainable chemistry. Chem. Soc. Rev. 43, 3480–3524 (2014).

    CAS  PubMed  Google Scholar 

  62. Min, B. K. & Friend, C. M. Heterogeneous gold-based catalysis for green chemistry: low-temperature CO oxidation and propene oxidation. Chem. Rev. 107, 2709–2724 (2007).

    CAS  PubMed  Google Scholar 

  63. Wang, C. L. et al. Water-mediated mars-van krevelen mechanism for CO oxidation on ceria-supported single-atom Pt1 catalyst. ACS Catal. 7, 887–891 (2017).

    CAS  Google Scholar 

  64. Moses-DeBusk, M. et al. CO oxidation on supported single Pt atoms: experimental and ab initio density functional studies of CO interaction with Pt atom on θ-Al2O3(010) surface. J. Am. Chem. Soc. 135, 12634–12645 (2013).

    CAS  PubMed  Google Scholar 

  65. Zhou, X. et al. Stable Pt single atoms and nanoclusters on ultrathin CuO film and their performances in CO oxidation. J. Phys. Chem. C. 120, 1709–1715 (2016).

    CAS  Google Scholar 

  66. Peterson, E. J. et al. Low-temperature carbon monoxide oxidation catalysed by regenerable atomically dispersed palladium on alumina. Nat. Commun. 5, 4885 (2014).

    CAS  PubMed  Google Scholar 

  67. Li, Z. Y., Yuan, Z., Li, X. N., Zhao, Y. X. & He, S. G. CO oxidation catalyzed by single gold atoms supported on aluminum oxide clusters. J. Am. Chem. Soc. 136, 14307–14313 (2014).

    CAS  PubMed  Google Scholar 

  68. Qiao, B. T. et al. Highly active Au1/Co3O4 single-atom catalyst for CO oxidation at room temperature. Chin. J. Catal. 36, 1505–1511 (2015).

    CAS  Google Scholar 

  69. Qiao, B. T. et al. Highly efficient catalysis of preferential oxidation of CO in H2-rich stream by gold single-atom catalysts. ACS Catal. 5, 6249–6254 (2015).

    CAS  Google Scholar 

  70. Shimizu, K., Sawabe, K. & Satsuma, A. Self-regenerative silver nanocluster catalyst for CO oxidation. ChemCatChem 3, 1290–1293 (2011).

    CAS  Google Scholar 

  71. Mallat, T. & Baiker, A. Oxidation of alcohols with molecular oxygen on solid catalysts. Chem. Rev. 104, 3037–3058 (2004).

    CAS  PubMed  Google Scholar 

  72. Xie, S. H., Tsunoyama, H., Kurashige, W., Negishi, Y. & Tsukuda, T. Enhancement in aerobic alcohol oxidation catalysis of Au25 clusters by single Pd atom doping. ACS Catal. 2, 1519–1523 (2012).

    CAS  Google Scholar 

  73. Wenkin, M., Renard, C., Ruiz, P., Delmon, B. & Devillers, M. On the role of bismuth-based alloys in carbon-supported bimetallic Bi-Pd catalysts for the selective oxidation of glucose to gluconic acid. Stud. Surf. Sci. Catal. 108, 391–398 (1997).

    CAS  Google Scholar 

  74. Zhang, H. J., Kawashima, K., Okumura, M. & Toshima, N. Colloidal Au single-atom catalysts embedded on Pd nanoclusters. J. Mater. Chem. A 2, 13498–13508 (2014).

    CAS  Google Scholar 

  75. Narula, C. K., Allard, L. F., Stocks, G. M. & Moses-DeBusk, M. Remarkable NO oxidation on single supported platinum atoms. Sci. Rep. 4 (2014).

  76. Mulla, S. S. et al. Reaction of NO and O2 to NO2 on Pt: kinetics and catalyst deactivation. J. Catal. 241, 389–399 (2006).

    CAS  Google Scholar 

  77. Meemken, F. & Baiker, A. Recent progress in heterogeneous asymmetric hydrogenation of C=O and C=C bonds on supported noble metal catalysts. Chem. Rev. 117, 11522–11569 (2017).

    CAS  PubMed  Google Scholar 

  78. Jagadeesh, R. V. et al. Nanoscale Fe2O3-based catalysts for selective hydrogenation of nitroarenes to anilines. Science 342, 1073–1076 (2013).

    CAS  PubMed  Google Scholar 

  79. Burge, H. D., Collins, D. J. & Davis, B. H. Intermediates in the Raney-nickel catalyzed hydrogenation of nitrobenzene to aniline. Ind. Eng. Chem. Prod. Res. Dev. 19, 389–391 (1980).

    CAS  Google Scholar 

  80. Moliner, M. et al. Reversible transformation of Pt nanoparticles into single atoms inside high-Silica chabazite zeolite. J. Am. Chem. Soc. 138, 15743–15750 (2016).

    CAS  PubMed  Google Scholar 

  81. Kyriakou, G. et al. Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations. Science 335, 1209–1212 (2012).

    CAS  PubMed  Google Scholar 

  82. Pei, G. X. et al. Performance of Cu-alloyed Pd single-atom catalyst for semihydrogenation of acetylene under simulated front-end conditions. ACS Catal. 7, 1491–1500 (2017).

    CAS  Google Scholar 

  83. Herrmann, T., Rossmann, L., Lucas, M. & Claus, P. High-performance supported catalysts with an ionic liquid layer for the selective hydrogenation of acetylene. Chem. Commun. 47, 12310–12312 (2011).

    CAS  Google Scholar 

  84. Vile, G. et al. A stable single-site palladium catalyst for hydrogenations. Angew. Chem. Int. Ed. 54, 11265–11269 (2015).

    CAS  Google Scholar 

  85. Yan, H. et al. Single-atom Pd1/graphene catalyst achieved by atomic layer deposition: remarkable performance in selective hydrogenation of 1,3-butadiene. J. Am. Chem. Soc. 137, 10484–10487 (2015).

    CAS  PubMed  Google Scholar 

  86. Rossell, M. D. et al. Magnetite-supported palladium single-atoms do not catalyse the hydrogenation of alkenes but small clusters do. Catal. Sci. Technol. 6, 4081–4085 (2016).

    CAS  Google Scholar 

  87. Lin, J. et al. Little do more: a highly effective Pt1/FeOx single-atom catalyst for the reduction of NO by H2. Chem. Commun. 51, 7911–7914 (2015).

    CAS  Google Scholar 

  88. Nguyen, L. et al. Reduction of nitric oxide with hydrogen on catalysts of singly dispersed bimetallic sites Pt1Com and Pd1Con. ACS Catal. 6, 840–850 (2016).

    CAS  Google Scholar 

  89. Olafsen, A. et al. Light alkanes CO2 reforming to synthesis gas over Ni based catalysts. Catal. Today 115, 179–185 (2006).

    CAS  Google Scholar 

  90. Duarte, R. B., Krumeich, F. & van Bokhoven, J. A. Structure, activity, and stability of atomically dispersed Rh in methane steam reforming. ACS Catal. 4, 1279–1286 (2014).

    CAS  Google Scholar 

  91. Zhu, Y. R., An, Z. & He, J. Single-atom and small-cluster Pt induced by Sn(IV) sites confined in an LDH lattice for catalytic reforming. J. Catal. 341, 44–54 (2016).

    CAS  Google Scholar 

  92. Chein, R. Y., Chen, Y. C., Lin, Y. S. & Chung, J. N. Hydrogen production using integrated methanol-steam reforming reactor with various reformer designs for PEM fuel cells. Int. J. Energ. Res. 36, 466–476 (2012).

    CAS  Google Scholar 

  93. Lin, L. L. et al. Low-temperature hydrogen production from water and methanol using Pt/alpha-MoC catalysts. Nature 544, 80–83 (2017).The single platinum site was stabilized over α–MoC support and showed outstanding hydrogen production activity and stability in the low-temperature aqueous-phase reforming of methanol process with average turnover frequency reaching 18046.

    CAS  PubMed  Google Scholar 

  94. Nielsen, M. et al. Low-temperature aqueous-phase methanol dehydrogenation to hydrogen and carbon dioxide. Nature 495, 85–89 (2013).

    CAS  PubMed  Google Scholar 

  95. Zhang, X. et al. Highly dispersed copper over beta-Mo2C as an efficient and stable catalyst for the reverse water gas shift (RWGS) reaction. ACS Catal. 7, 912–918 (2017).

    CAS  Google Scholar 

  96. Mendes, D. et al. The water-gas shift reaction: from conventional catalytic systems to Pd-based membrane reactors - a review. Asia-Pac. J. Chem. Eng. 5, 111–137 (2010).

    CAS  Google Scholar 

  97. Yang, M. et al. Catalytically active Au-O(OH)x-species stabilized by alkali ions on zeolites and mesoporous oxides. Science 346, 1498–1501 (2014).This single-site gold species which is stabilized by alkali ions (Na or K) on KLTL-zeolite and mesoporous MCM-41 silica is the active sites for the low-temperature water-gas shift reaction.

    CAS  PubMed  Google Scholar 

  98. Yang, M. et al. A common single-site Pt(II)-O(OH)x — species stabilized by sodium on “active” and “inert” supports catalyzes the water-gas shift reaction. J. Am. Chem. Soc. 137, 3470–3473 (2015).

    CAS  PubMed  Google Scholar 

  99. Lin, J. et al. Remarkable Performance of Ir1/FeOx single-atom catalyst in water gas shift reaction. J. Am. Chem. Soc. 135, 15314–15317 (2013).

    CAS  PubMed  Google Scholar 

  100. Börner, A. & Franke, R. Hydroformylation: Fundamentals, Processes, and Applications in Organic Synthesis (Wiley-VCH, Weinheim, 2016).

    Google Scholar 

  101. Lang, R. et al. Hydroformylation of olefins by a rhodium single-atom catalyst with activity comparable to RhCl(PPh3)3. Angew. Chem. Int. Ed. 55, 16054–16058 (2016).A single site Rh catalyst supported on ZnO was fabricated and demonstrated remarkable activity in the hydroformylation of olefins with the comparable TON to its counterpart homogeneous catalyst.

    CAS  Google Scholar 

  102. Noonan, G. M., Cobley, C. J., Mahoney, T. & Clarke, M. L. Rhodium/phospholane-phosphite catalysts give unusually high regioselectivity in the enantioselective hydroformylation of vinyl arenes. Chem. Commun. 50, 1475–1477 (2014).

    CAS  Google Scholar 

  103. Hou, C. et al. Hydroformylation of alkenes over rhodium supported on the metal-organic framework ZIF-8. Nano Res. 7, 1364–1369 (2014).

    CAS  Google Scholar 

  104. Wang, L. B. et al. Atomic-level insights in optimizing reaction paths for hydroformylation reaction over Rh/CoO single-atom catalyst. Nat. Commun. 7, 14036 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Marko, I. E. et al. Selective and efficient platinum(0)-carbene complexes as hydrosilylation catalysts. Science 298, 204–206 (2002).

    CAS  PubMed  Google Scholar 

  106. Cui, X. J. et al. Synthesis of single atom based heterogeneous platinum catalysts: high selectivity and activity for hydrosilylation reactions. Acs Cent. Sci. 3, 580–585 (2017).The first heterogeneous single site Pt on Al 2 O 3 nanorods was successfully applied on the hydrosilylation of silanes and arenes with wide substrate scope and excellent chemoselectivity.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Wang, J. et al. Hydrogenolysis of glycerol to 1,3-propanediol under low hydrogen pressure over WOx-supported single/pseudo-single atom Pt catalyst. ChemSusChem 9, 784–790 (2016).

    CAS  PubMed  Google Scholar 

  108. Malta, G. et al. Identification of single-site gold catalysis in acetylene hydrochlorination. Science 355, 1399–1402 (2017).

    CAS  PubMed  Google Scholar 

  109. Yang, S. & Lee, H. Atomically dispersed platinum on gold nano-octahedra with high catalytic activity on formic acid oxidation. ACS Catal. 3, 437–443 (2013).

    CAS  Google Scholar 

  110. Kamiya, K., Kamai, R., Hashimoto, K. & Nakanishi, S. Platinum-modified covalent triazine frameworks hybridized with carbon nanoparticles as methanol-tolerant oxygen reduction electrocatalysts. Nat. Commun. 5, 5040 (2014).

    CAS  PubMed  Google Scholar 

  111. Cheng, N. C. et al. Platinum single-atom and cluster catalysis of the hydrogen evolution reaction. Nat. Commun. 7, 13638 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Shi, Y. T. et al. Single-atom catalysis in mesoporous photovoltaics: the principle of utility maximization. Adv. Mater. 26, 8147–8153 (2014).

    CAS  PubMed  Google Scholar 

  113. Qiu, H. J. et al. Nanoporous graphene with single-atom nickel dopants: an efficient and stable catalyst for electrochemical hydrogen production. Angew. Chem. Int. Ed. 54, 14031–14035 (2015).

    CAS  Google Scholar 

  114. Yin, P. Q. et al. Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew. Chem. Int. Ed. 55, 10800–10805 (2016).

    CAS  Google Scholar 

  115. Back, S., Lim, J., Kim, N. Y., Kim, Y. H. & Jung, Y. Single-atom catalysts for CO2 electroreduction with significant activity and selectivity improvements. Chem. Sci. 8, 1090–1096 (2017).

    CAS  PubMed  Google Scholar 

  116. Backs, S. & Jung, Y. S. TiC- and TiN-supported single-atom catalysts for dramatic improvements in CO2 electrochemical reduction to CH4. Acs Energy Lett. 2, 969–975 (2017).

    Google Scholar 

  117. Kudo, A. & Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 38, 253–278 (2009).

    CAS  PubMed  Google Scholar 

  118. He, B. L., Shen, J. S. & Tian, Z. X. Iron-embedded C2N monolayer: a promising low-cost and high-activity single-atom catalyst for CO oxidation. Phys. Chem. Chem. Phys. 18, 24261–24269 (2016).

    CAS  PubMed  Google Scholar 

  119. Stambula, S. et al. Chemical structure of nitrogen-doped graphene with single platinum atoms and atomic clusters as a platform for the PEMFC electrode. J. Phys. Chem. C. 118, 3890–3900 (2014).

    CAS  Google Scholar 

  120. Liu, W. G. et al. Discriminating catalytically active FeNx species of atomically dispersed Fe-N-C catalyst for selective oxidation of the C–H Bond. J. Am. Chem. Soc. 139, 10790–10798 (2017).The single Fe site was fabricated for the first time and the high activity of the resulting catalyst on the selective oxidation of C–H bonds are mostly derived from the more medium-spin Fe−N 5 sites.

    CAS  PubMed  Google Scholar 

  121. Wasilke, J. C., Obrey, S. J., Baker, R. T. & Bazan, G. C. Concurrent tandem catalysis. Chem. Rev. 105, 1001–1020 (2005).

    CAS  PubMed  Google Scholar 

  122. Huang, Y. B., Liang, J., Wang, X. S. & Cao, R. Multifunctional metal–organic framework catalysts: synergistic catalysis and tandem reactions. Chem. Soc. Rev. 46, 126–157 (2017).

    CAS  PubMed  Google Scholar 

  123. Fu, Q. & Luo, Y. Catalytic activity of single transition-metal atom doped in Cu(111) surface for heterogeneous hydrogenation. J. Phys. Chem. C. 117, 14618–14624 (2013).

    CAS  Google Scholar 

  124. Rao, C. N. R., Thomas, P. J. & Kulkarni, G. U. Nanocrystals-synthesis, Properties, and Applications (Springer, New York, 2007).

  125. Li, X. N., Yuan, Z., Meng, J. H., Li, Z. Y. & He, S. G. Catalytic CO oxidation on single Pt-atom doped aluminum oxide clusters: electronegativity-ladder effect. J. Phys. Chem. C. 119, 15414–15420 (2015).

    CAS  Google Scholar 

  126. Gao, H. W. CO oxidation mechanism on the Ɣ-Al2O3 supported single Pt atom: first principle study. Appl. Surf. Sci. 379, 347–357 (2016).

    CAS  Google Scholar 

  127. Zhao, Y. X., Li, Z. Y., Yuan, Z., Li, X. N. & He, S. G. Thermal methane conversion to formaldehyde promoted by single platinum atoms in PtAl2O4- cluster anions. Angew. Chem. Int. Ed. 53, 9482–9486 (2014).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge support by the state of Mecklenburg-Vorpommern and the BMBF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Beller.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, X., Li, W., Ryabchuk, P. et al. Bridging homogeneous and heterogeneous catalysis by heterogeneous single-metal-site catalysts. Nat Catal 1, 385–397 (2018). https://doi.org/10.1038/s41929-018-0090-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-018-0090-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing