Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Complete electron economy by pairing electrolysis with hydrogenation


Electrosynthesis provides a method of driving organic reaction chemistry under ambient conditions with electricity. Pairing two reactions together enables the synthesis of two valuable chemicals with no waste product. Here we report the paired electrolysis of 4-methoxybenzyl alcohol to 4-methoxybenzaldehyde with the concomitant formation of 1-hexene from 1-hexyne in an electrochemical cell. These reaction chambers are separated by a dense palladium membrane that reduces protons formed at the anode to hydrogen atoms that can permeate through the palladium foil to hydrogenate 1-hexyne. The palladium membrane enables two reactions to be performed in distinct reaction conditions: hydrogenation in organic solvents and electrochemical oxidation in aqueous electrolyte. The starting materials in both chambers react quantitatively over 5 hours of electrolysis, and selectivities ≥95% can be achieved for 4-methoxybenzaldehyde and 1-hexene with control of reaction conditions. Exquisite control of the reaction kinetics and selectivities of each of the individual reactions is demonstrated.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Three-compartment cell configuration designed for paired electrolysis.
Fig. 2: Hydrogen evolution on both sides of the palladium membrane.
Fig. 3: Catalyst morphology and product distribution for palladium membrane chemical hydrogenation.
Fig. 4: Product conversion and distribution in paired electrolysis.
Fig. 5: Hydrogenation and oxidation current efficiencies at various applied currents.
Fig. 6: Hydrogenation selectivity with applied current and electrolyte.


  1. 1.

    Yan, M., Kawamata, Y. & Baran, P. S. Synthetic organic electrochemical methods since 2000: on the verge of a renaissance. Chem. Rev. 117, 13230–13319 (2017).

    Article  CAS  PubMed  Google Scholar 

  2. 2.

    Frontana-Uribe, B. A., Daniel Little, R., Ibanez, J. G., Palma, A. & Vasquez-Medrano, R. Organic electrosynthesis: a promising green methodology in organic chemistry. Green. Chem. 12, 2099–2119 (2010).

    Article  CAS  Google Scholar 

  3. 3.

    Yoshida, J.-I., Kataoka, K., Horcajada, R. & Nagaki, A. Modern strategies in electroorganic synthesis. Chem. Rev. 108, 2265–2299 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. 4.

    Li, T., Cao, Y., He, J. & Berlinguette, C. P. Electrolytic CO2 reduction in tandem with oxidative organic chemistry. ACS Cent. Sci. 3, 778–783 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Llorente, M. J., Nguyen, B. H., Kubiak, C. P. & Moeller, K. D. Paired electrolysis in the simultaneous production of synthetic intermediates and substrates. J. Am. Chem. Soc. 138, 15110–15113 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. 6.

    Cha, H. G. & Choi, K.-S. Combined biomass valorization and hydrogen production in a photoelectrochemical cell. Nat. Chem. 7, 328–333 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. 7.

    You, B., Liu, X., Jiang, N. & Sun, Y. A general strategy for decoupled hydrogen production from water splitting by integrating oxidative biomass valorization. J. Am. Chem. Soc. 138, 13639–13646 (2016).

    Article  CAS  Google Scholar 

  8. 8.

    Paddon, C. A. et al. Towards paired and coupled electrode reactions for clean organic microreactor electrosyntheses. J. Appl. Electrochem. 36, 617 (2006).

    Article  CAS  Google Scholar 

  9. 9.

    Amemiya, F., Horii, D., Fuchigami, T. & Atobe, M. Self-supported paired electrosynthesis using a microflow reactor without intentionally added electrolyte. J. Electrochem. Soc. 155, E162–E165 (2008).

    Article  CAS  Google Scholar 

  10. 10.

    Zhang, L., Zha, Z., Wang, Z. & Fu, S. Aqueous electrosynthesis of carbonyl compounds and the corresponding homoallylic alcohols in a divided cell. Tetrahedron Lett. 51, 1426–1429 (2010).

    Article  CAS  Google Scholar 

  11. 11.

    Wicke, E., Brodowsky, H. & Züchner, H. in Hydrogen in Metals II (eds Alefeld, G. & Völkl, J.) 73–155 (Springer, Berlin, Heidelberg, 1978).

  12. 12.

    Dittmeyer, R., Höllein, V. & Daub, K. Membrane reactors for hydrogenation and dehydrogenation processes based on supported palladium. J. Mol. Catal. A Chem. 173, 135–184 (2001).

    Article  CAS  Google Scholar 

  13. 13.

    Dittmeyer, R., Svajda, K. & Reif, M. A review of catalytic membrane layers for gas/liquid reactions. Top. Catal. 29, 3–27 (2004).

    Article  CAS  Google Scholar 

  14. 14.

    Hatlevik, Ø. et al. Palladium and palladium alloy membranes for hydrogen separation and production: history, fabrication strategies, and current performance. Sep. Purif. Technol. 73, 59–64 (2010).

    Article  CAS  Google Scholar 

  15. 15.

    Shirasaki, Y. et al. Development of membrane reformer system for highly efficient hydrogen production from natural gas. Int. J. Hydrog. Energy 34, 4482–4487 (2009).

    Article  CAS  Google Scholar 

  16. 16.

    Itoh, N. & C. Xu, W. Selective hydrogenation of phenol to cyclohexanone using palladium-based membranes as catalysts. Appl. Catal. A 107, 83–100 (1993).

    Article  CAS  Google Scholar 

  17. 17.

    Nagamoto, H. & Inoue, H. The hydrogenation of 1,3-butadiene over a palladium membrane. Bull. Chem. Soc. Jpn 59, 3935–3939 (1986).

    Article  CAS  Google Scholar 

  18. 18.

    Shirai, M. & Arai, M. Hydrogenation of furan with hydrogen atoms permeating through a palladium membrane. Langmuir 15, 1577–1578 (1999).

    Article  CAS  Google Scholar 

  19. 19.

    Inoue, H., Abe, T. & Iwakura, C. Successive hydrogenation of styrene at a palladium sheet electrode combined with electrochemical supply of hydrogen. Chem. Commun. 0, 55–56 (1996).

    Article  Google Scholar 

  20. 20.

    Iwakura, C., Yoshida, Y. & Inoue, H. A new hydrogenation system of 4-methylstyrene using a palladinized palladium sheet electrode. J. Electroanal. Chem. 431, 43–45 (1997).

    Article  CAS  Google Scholar 

  21. 21.

    Gryaznov, V. M. Platinum metals as components of catalyst-membrane systems. Platin. Met. Rev. 36, 70–79 (1992).

    CAS  Google Scholar 

  22. 22.

    Gryaznov, V. M., Ermilova, M. M. & Orekhova, N. V. Membrane–catalyst systems for selectivity improvement in dehydrogenation and hydrogenation reactions. Catal. Today 67, 185–188 (2001).

    Article  CAS  Google Scholar 

  23. 23.

    Farris, T. S. & Armor, J. N. Liquid-phase catalytic hydrogenation using palladium alloy membranes. Appl. Catal. A 96, 25–32 (1993).

    Article  CAS  Google Scholar 

  24. 24.

    Gryaznov, V. M. Hydrogen permeable palladium membrane catalysts. Platin. Met. Rev. 30, 68–72 (1986).

    CAS  Google Scholar 

  25. 25.

    Niwa, S.-i. et al. A one-step conversion of benzene to phenol with a palladium membrane. Science 295, 105–107 (2002).

    Article  CAS  Google Scholar 

  26. 26.

    Iwakura, C., Ito, T. & Inoue, H. Construction of a new dehydrogenation system using a two-compartment cell separated by a palladized Pd sheet electrode. J. Electroanal. Chem. 463, 116–118 (1999).

    Article  CAS  Google Scholar 

  27. 27.

    Collins, J. P. et al. Catalytic dehydrogenation of propane in hydrogen permselective membrane reactors. Ind. Eng. Chem. Res. 35, 4398–4405 (1996).

    Article  CAS  Google Scholar 

  28. 28.

    Quicker, P., Höllein, V. & Dittmeyer, R. Catalytic dehydrogenation of hydrocarbons in palladium composite membrane reactors. Catal. Today 56, 21–34 (2000).

    Article  CAS  Google Scholar 

  29. 29.

    Criscuoli, A., Basile, A. & Drioli, E. An analysis of the performance of membrane reactors for the water–gas shift reaction using gas feed mixtures. Catal. Today 56, 53–64 (2000).

    Article  CAS  Google Scholar 

  30. 30.

    Uemiya, S., Sato, N., Ando, H. & Kikuchi, E. The water gas shift reaction assisted by a palladium membrane reactor. Ind. Eng. Chem. Res. 30, 585–589 (1991).

    Article  CAS  Google Scholar 

  31. 31.

    Gryaznov, V. Membrane catalysis. Catal. Today 51, 391–395 (1999).

    Article  CAS  Google Scholar 

  32. 32.

    Teschner, D. et al. The roles of subsurface carbon and hydrogen in palladium-catalyzed alkyne hydrogenation. Science 320, 86–89 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. 33.

    Aleksandrov, H. A., Kozlov, S. M., Schauermann, S., Vayssilov, G. N. & Neyman, K. M. How absorbed hydrogen affects the catalytic activity of transition metals. Angew. Chem. Int. Ed. 53, 13371–13375 (2014).

    Article  CAS  Google Scholar 

  34. 34.

    Zhao, S. et al. Multimodal study of the speciations and activities of supported Pd catalysts during the hydrogenation of ethylene. J. Phys. Chem. C 121, 18962–18972 (2017).

    Article  CAS  Google Scholar 

  35. 35.

    Armbrüster, M. et al. How to control the selectivity of palladium-based catalysts in hydrogenation reactions: the role of subsurface chemistry. ChemCatChem 4, 1048–1063 (2012).

    Article  CAS  Google Scholar 

  36. 36.

    Ceyer, S. T. The unique chemistry of hydrogen beneath the surface: catalytic hydrogenation of hydrocarbons. Acc. Chem. Res. 34, 737–744 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. 37.

    Teschner, D. et al. Understanding palladium hydrogenation catalysts: when the nature of the reactive molecule controls the nature of the catalyst active phase. Angew. Chem. Int. Ed. 47, 9274–9278 (2008).

    Article  CAS  Google Scholar 

  38. 38.

    Gao, D. et al. Switchable CO2 electroreduction via engineering active phases of Pd nanoparticles. Nano Res. 10, 2181–2191 (2017).

    Article  CAS  Google Scholar 

  39. 39.

    Sheng, W. et al. Electrochemical reduction of CO2 to synthesis gas with controlled CO/H2 ratios. Energy Environ. Sci. 10, 1180–1185 (2017).

    Article  CAS  Google Scholar 

  40. 40.

    Min, X. & Kanan, M. W. Pd-catalyzed electrohydrogenation of carbon dioxide to formate: high mass activity at low overpotential and identification of the deactivation pathway. J. Am. Chem. Soc. 137, 4701–4708 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. 41.

    Zhao, Z. et al. Synthesis of stable shape-controlled catalytically active β-palladium hydride. J. Am. Chem. Soc. 137, 15672–15675 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. 42.

    Güther, W. & Vielstich, W. Investigation on the electrocatalytic dehydrogenation of cho-compounds in acidic media via a palladium membrane. Electrochim. Acta 27, 811–816 (1982).

    Article  Google Scholar 

  43. 43.

    Bagotzky, V. S. & Vassiliev, Y. B. Absorption of organic substances on platinum electrodes. Electrochim. Acta 11, 1439–1461 (1966).

    Article  CAS  Google Scholar 

  44. 44.

    Ward, T. L. & Dao, T. Model of hydrogen permeation behavior in palladium membranes. J. Memb. Sci. 153, 211–231 (1999).

    Article  CAS  Google Scholar 

  45. 45.

    Abys, J. A. in Modern Electroplating (eds Schlesinger, M. & Paunovic, M.) 327–368 (John Wiley & Sons, Hoboken, 2011).

  46. 46.

    Badalyan, A. & Stahl, S. S. Cooperative electrocatalytic alcohol oxidation with electron-proton-transfer mediators. Nature 535, 406–410 (2016).

    Article  CAS  PubMed  Google Scholar 

Download references


The authors are grateful to the Canadian Natural Science and Engineering Council (RGPIN 337345-13), Canadian Foundation for Innovation (229288), Canadian Institute for Advanced Research (BSE-BERL-162173), Canada Research Chairs and Google for financial support. Thank you to Y. Ling in the University of British Columbia Mass Spectrometry Centre for assistance with the gas chromatography–mass spectrometer instrument and to G. Owen in the Centre for High-Throughput Phenogenomics for assistance with scanning electron microscope imaging.

Author information




R.S.S., B.P.M. and C.P.B. devised the concept. R.S.S. and R.S.D. performed preliminary proof-of-concept experiments. R.S.S. performed paired electrolysis experiments. V.A.C. helped with characterization. R.S.S. and C.P.B. wrote the manuscript. C.P.B. supervised the project.

Corresponding author

Correspondence to Curtis P. Berlinguette.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–10

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sherbo, R.S., Delima, R.S., Chiykowski, V.A. et al. Complete electron economy by pairing electrolysis with hydrogenation. Nat Catal 1, 501–507 (2018).

Download citation

Further reading


Quick links