Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Recent trends and fundamental insights in the methanol-to-hydrocarbons process

Abstract

The production of high-demand chemical commodities such as ethylene and propylene (methanol-to-olefins), hydrocarbons (methanol-to-hydrocarbons), gasoline (methanol-to-gasoline) and aromatics (methanol-to-aromatics) from methanol—obtainable from alternative feedstocks, such as carbon dioxide, biomass, waste or natural gas through the intermediate formation of synthesis gas—has been central to research in both academia and industry. Although discovered in the late 1970s, this catalytic technology has only been industrially implemented over the past decade, with a number of large commercial plants already operating in Asia. However, as is the case for other technologies, industrial maturity is not synonymous with full understanding. For this reason, research is still intense and a number of important discoveries have been reported over the last few years. In this review, we summarize the most recent advances in mechanistic understanding—including direct C–C bond formation during the induction period and the promotional effect of zeolite topology and acidity on the alkene cycle—and correlate these insights to practical aspects in terms of catalyst design and engineering.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Milestones and mechanism development of the MTH process.
Fig. 2: Several proposed direct mechanistic routes during the early stages of the zeolite-catalysed MTH process.

panel a adapted from ref. 18, American Chemical Society; panels b and c adapted from refs 11,13, Wiley, respectively; panels d and e reproduced from refs 29,33, Royal Society of Chemistry; panels fi reproduced from ref. 14, Wiley; panel j adapted from ref. 13, Wiley; panel k adapted from ref. 17, American Chemical Society.

Fig. 3: The spectroscopic signatures of crucial intermediates during the zeolite catalysed methanol-to-hydrocarbon (MTH) process.

panels ac from refs 13,14 and 13, Wiley, respectively; panel d reproduced from ref. 46, American Chemical Society; panel e reproduced from ref. 13, Wiley; panel f reproduced from ref. 53, Wiley

Fig. 4: Steady-state mechanism development of the MTH process.
Fig. 5: Impact of topology on cycles propagation.
Fig. 6: Impact of acidity on cycles propagation.
Fig. 7: Resolving the location of the first coke species formed during the MTH process using APT.

Similar content being viewed by others

References

  1. Chang, C. D. & Lang, W. H. Process for manufacturing olefins. US patent US4025576 A (1977).

  2. Vogt, E. T. C. & Weckhuysen, B. M. Fluid catalytic cracking: recent developments on the grand old lady of zeolite catalysis. Chem. Soc. Rev. 44, 7342–7370 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mitchell, S. et al. Structural analysis of hierarchically organized zeolites. Nat. Comm 6, 8633–8647 (2015).

    Article  CAS  Google Scholar 

  4. Stöcker, M. Methanol-to-hydrocarbons: catalytic materials and their behavior. Microporous Mesoporous Mater. 29, 3–48 (1999). A review covering the main achievements in catalyst design and mechanism understanding of methanol-to-hydrocarbons process over the last century.

    Article  Google Scholar 

  5. Olsbye, U. et al. Conversion of methanol to hydrocarbons: how zeolite cavity and pore size controls product selectivity. Angew. Chem. Int. Ed. 51, 5810–5831 (2012). A methanol-to-hydrocarbons review dedicated to mechanism understanding and describing main parameters affecting selectivty to hydrocarbons.

    Article  CAS  Google Scholar 

  6. Olsbye, U. et al. The formation and degradation of active species during methanol conversion over protonated zeotype catalysts. Chem. Soc. Rev. 44, 7155–7176 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. Tian, P., Wei, Y., Ye, M. & Liu, Z. Methanol to olefins (MTO): from fundamentals to commercialization. ACS Catal 5, 1922–1938 (2015).

    Article  CAS  Google Scholar 

  8. Ilias, S. & Bhan, A. Mechanism of the catalytic conversion of methanol to hydrocarbons. ACS Catal 3, 18–31 (2013).

    Article  CAS  Google Scholar 

  9. Van Speybroeck, V. et al. First principle chemical kinetics in zeolites: the methanol-to-olefin process as a case study. Chem. Soc. Rev. 43, 7326–7357 (2014).

    Article  PubMed  Google Scholar 

  10. Schulz, H. About the mechanism of methanol conversion on zeolites. Catal. Lett. (2018).

  11. Yamazaki, H. et al. Evidence for a “carbene-like” intermediate during the reaction of methoxy species with light alkenes on H-ZSM-5. Angew. Chem. Int. Ed. 50, 1853–1856 (2011).

    Article  CAS  Google Scholar 

  12. Yamazaki, H. et al. Direct production of propene from methoxy species and dimethyl ether over H-ZSM-5. J. Phys. Chem. C 116, 24091–24097 (2012).

    Article  CAS  Google Scholar 

  13. Chowdhury, A. D. et al. Initial carbon–carbon bond formation during the early stages of the methanol-to-olefin process proven by zeolite-trapped acetate and methyl acetate. Angew. Chem. Int. Ed. 55, 15840–15845 (2016). An in-depth mechanistic investigation providing spectroscopic evidence in support of the Koch-carbonylation mechanism of the methanol-to-hydrocarbon reaction.

    Article  CAS  Google Scholar 

  14. Wu, X. et al. Direct mechanism of the first carbon–carbon bond formation in the methanol-to-hydrocarbons process. Angew. Chem. Int. Ed. 56, 9039–9043 (2017).

    Article  CAS  Google Scholar 

  15. Lercher, J. A. New Lewis acid catalyzed pathway to carbon–carbon bonds from methanol. ACS Cent. Sci. 1, 350–351 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu, Y. et al. Formation mechanism of the first carbon–carbon bond and the first olefin in the methanol conversion into hydrocarbons. Angew. Chem. Int. Ed. 55, 5723–5726 (2016).

    Article  CAS  Google Scholar 

  17. Comas-Vives, A., Valla, M., Copéret, C. & Sautet, P. Cooperativity between Al sites promotes hydrogen transfer and carbon — carbon bond formation upon dimethyl ether activation on alumina. ACS Cent. Sci. 1, 313–319 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang, W. & Hunger, M. Reactivity of surface alkoxy species on acidic zeolite catalysts. Acc. Chem. Res. 41, 895–904 (2008). An in-depth review providing versatile reactivity aspects of surface-methoxy species during zeolite catalyzed hydrocarbon conversion.

    Article  CAS  PubMed  Google Scholar 

  19. Dahl, I. M. & Kolboe, S. On the reaction mechanism for propene formation in the MTO reaction over SAPO-34. Catalysis Lett. 20, 329–336 (1993). This article illustrates the concept of hydrocarbon pool species during zeolite catalyzed methanol-to-hydrocarbon process.

    Article  CAS  Google Scholar 

  20. Song, W., Marcus, D. M., Fu, H., Ehresmann, J. O. & Haw, J. F. An oft-studied reaction that may never have been: direct catalytic conversion of methanol or dimethyl ether to hydrocarbons on the solid acids HZSM-5 or HSAPO-34. J. Am. Chem. Soc. 124, 3844–3845 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Lesthaeghe, D., Van Speybroeck, V., Marin, G. B. & Waroquier, M. What role do oxonium ions and oxonium ylides play in the ZSM-5 catalysed methanol-to-olefin process? Chem. Phys. Lett. 417, 309–315 (2006).

    Article  CAS  Google Scholar 

  22. Lesthaeghe, D., Van Speybroeck, V., Marin, G. B. & Waroquier, M. The rise and fall of direct mechanisms in methanol-to-olefin catalysis: an overview of theoretical contributions. Ind. Eng. Chem. Res. 46, 8832–8838 (2007).

    Article  CAS  Google Scholar 

  23. Jiang, Y. et al. Effect of organic impurities on the hydrocarbon formation via the decomposition of surface methoxy groups on acidic zeolite catalysts. J. Catal. 238, 21–27 (2006).

    Article  CAS  Google Scholar 

  24. Dai, W. et al. Understanding the early stages of the methanol-to-olefin Conversion on H — SAPO-34. ACS Catal 5, 317–326 (2014).

    Article  CAS  Google Scholar 

  25. Dai, W., Wu, G., Li, L., Guan, N. & Hunger, M. Mechanisms of the deactivation of SAPO-34 materials with different crystal sizes applied as MTO catalysts. ACS Catal 3, 588–596 (2013).

    Article  CAS  Google Scholar 

  26. Jiang, Y., Hunger, M. & Wang, W. On the reactivity of surface methoxy species in acidic zeolites. J. Am. Chem. Soc. 128, 11679–11692 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Wang, W., Buchholz, A., Seiler, M. & Hunger, M. Evidence for an initiation of the methanol-to-olefin process by reactive surface methoxy groups on acidic zeolite catalysts. J. Am. Chem. Soc. 125, 15260–15267 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Li, J. et al. A route to form initial hydrocarbon pool species in methanol conversion to olefins over zeolites. J. Catal. 317, 277–283 (2014).

    Article  CAS  Google Scholar 

  29. Wei, Z. et al. Methane formation mechanism in the initial methanol-to-olefins process catalyzed by SAPO-34. Catal. Sci. Tech 6, 5526–5533 (2016).

    Article  CAS  Google Scholar 

  30. Plessow, P. N. & Studt, F. Unraveling the mechanism of the initiation reaction of the methanol to olefins process using ab Initio and DFT calculations. ACS Catal 7, 7987–7994 (2017).

    Article  CAS  Google Scholar 

  31. Kazansky, V. & Senchenya, I. N. Quantum chemical study of the electronic structure and geometry of surface alkoxy groups as probable active intermediates of heterogeneous acidic catalysts: what are the adsorbed carbenium ions? J. Catal. 119, 108–120 (1989).

    Article  Google Scholar 

  32. Salehirad, F. & Anderson, M. W. Solid-state 13C MAS NMR study of methanol-to-hydrocarbon chemistry over H-SAPO-34. J. Catal. 314, 301–314 (1996).

    Article  Google Scholar 

  33. Hutchings, G. J., Gottschalk, F., Hall, M. V. Ml & Hunter, R. Hydrocarbon formation from methylating agents over the zeolite catalyst ZSM-5. Comments on the mechanism of carbon–carbon bond and methane formation. J. Chem. Soc. Faraday Trans. 83, 571–583 (1987).

    Article  CAS  Google Scholar 

  34. Plessow, P. N. & Studt, F. Theoretical insights into the effect of the framework on the initiation mechanism of the MTO process. Catal. Lett. 148, 1246–1253 (2018).

    Article  CAS  Google Scholar 

  35. Dessau, R. M. & Lapierre, R. B. On the mechanism of methanol conversion to hydrocarbons over HZSM-5. J. Catal. 78, 136–141 (1982).

    Article  CAS  Google Scholar 

  36. Svelle, S. et al. Conversion of methanol into hydrocarbons over zeolite H-ZSM-5: ethene formation is mechanistically separated from the formation of higher alkenes. J. Am. Chem. Soc. 128, 14770–14771 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Bjørgen, M. et al. Conversion of methanol to hydrocarbons over zeolite H-ZSM-5: on the origin of the olefinic species. J. Catal. 249, 195–207 (2007).

    Article  CAS  Google Scholar 

  38. Sun, X. et al. On reaction pathways in the conversion of methanol to hydrocarbons on HZSM-5. J. Catal. 317, 185–197 (2014).

    Article  CAS  Google Scholar 

  39. Wang, S. et al. Polymethylbenzene or alkene cycle? theoretical study on their contribution to the process of methanol to olefins over H-ZSM-5 zeolite. J. Phys. Chem. C 119, 28482–28498 (2015).

    Article  CAS  Google Scholar 

  40. Sun, X. et al. On the impact of co-feeding aromatics and olefins for the methanol-to-olefins reaction on HZSM-5. J. Catal. 314, 21–31 (2014). Seminal kinetic investigations demonstrating the autocatalytic nature of the mechanism and discussing the effect of the feed composition on the dominant reaction pathways.

    Article  CAS  Google Scholar 

  41. Van Speybroeck, V. et al. Mechanistic studies on chabazite-type methanol-to-olefin catalysts: insights from time-resolved UV/Vis microspectroscopy combined with theoretical simulations. ChemCatChem 5, 173–184 (2013).

    Article  CAS  Google Scholar 

  42. Borodina, E. et al. Influence of the reaction temperature on the nature of the active and deactivating species during methanol to olefins conversion over H-SSZ-13. ACS Catal 5, 992–1003 (2015).

    Article  CAS  Google Scholar 

  43. Dai, W. et al. Intermediates and dominating reaction mechanism during the early period of the methanol-to-olefin conversion on SAPO-41. J. Phys. Chem. C 119, 2637–2645 (2015).

    CAS  Google Scholar 

  44. Hemelsoet, K. et al. Identification of intermediates in zeolite-catalyzed reactions by in situ UV/Vis microspectroscopy and a complementary set of molecular simulations. Chem. Eur. J 19, 16595–16606 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. Qian, Q. et al. Single-particle spectroscopy of alcohol-to-olefins over SAPO-34 at different reaction stages: crystal accessibility and hydrocarbons reactivity. ChemCatChem 6, 772–783 (2014).

    Article  CAS  Google Scholar 

  46. Wulfers, M. J. & Jentoft, F. C. The role of cyclopentadienium ions in methanol-to-hydrocarbons chemistry. ACS Catal 4, 3521–3532 (2014).

    Article  CAS  Google Scholar 

  47. Borodina, E. et al. Influence of the reaction temperature on the nature of the active and deactivating species during methanol-to-olefins conversion over H-SAPO-34. ACS Catal 7, 5268–5281 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Goetze, J. & Weckhuysen, B. M. Spatiotemporal coke formation over zeolite ZSM-5 during the methanol-to-olefins process as studied with operando UV-vis spectroscopy: a comparison between H-ZSM-5 and Mg-ZSM-5. Catal. Sci. Technol 8, 1632–1644 (2018).

    Article  CAS  Google Scholar 

  49. Haw, J. F., Song, W., Marcus, D. M. & Nicholas, J. B. The mechanism of methanol to hydrocarbon catalysis. Acc. Chem. Res. 36, 317–326 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Xu, T. et al. Synthesis of a benzenium ion in a zeolite with use of a catalytic flow reactor. J. Am. Chem. Soc. 120, 4025–4026 (1998).

    Article  CAS  Google Scholar 

  51. Haw, J. F. et al. Roles for cyclopentenyl cations in the synthesis of hydrocarbons from methanol on zeolite catalyst HZSM-5. J. Am. Chem. Soc. 122, 4763–4775 (2000).

    Article  CAS  Google Scholar 

  52. Li, J. et al. Observation of heptamethylbenzenium cation over SAPO-type molecular sieve DNL-6 under real MTO conversion conditions. J. Am. Chem. Soc. 134, 836–839 (2012).

    Article  CAS  PubMed  Google Scholar 

  53. Xu, S. et al. Direct observation of cyclic carbenium ions and their role in the catalytic cycle of the methanol-to-olefin reaction over chabazite zeolites. Angew. Chem. Int. Ed. 52, 11564–11568 (2013).

    Article  CAS  Google Scholar 

  54. Song, W., Nicholas, J. B., Sassi, A. & Haw, J. F. Synthesis of the heptamethylbenzenium cation in zeolite: in situ NMR and theory. Catal. Lett 81, 49–53 (2002).

    Article  CAS  Google Scholar 

  55. Bollini, P. & Bhan, A. Improving HSAPO-34 methanol-to-olefin turnover capacity by seeding the hydrocarbon pool. ChemPhysChem 19, 479–483 (2018).

    Article  CAS  PubMed  Google Scholar 

  56. Martinez-Espin, J. S. et al. New insights into catalyst deactivation and product distribution of zeolites in the methanol-to-hydrocarbons (MTH) reaction with methanol and dimethyl ether feeds. Catal. Sci. Technol 7, 2700–2716 (2017).

    Article  CAS  Google Scholar 

  57. Muller, S. et al. Coke formation and deactivation pathways on H-ZSM-5 in the conversion of methanol to olefins. J. Catal. 325, 48–59 (2015).

    Article  CAS  Google Scholar 

  58. Hwang, A. & Bhan, A. Bifunctional strategy coupling Y2O3-catalyzed alkanal decomposition with methanol-to-olefins catalysis for enhanced lifetime. ACS Catal 7, 4417–4422 (2017).

    Article  CAS  Google Scholar 

  59. Yarulina, I., Kapteijn, F. & Gascon, J. The importance of heat effects in the methanol to hydrocarbons reaction over ZSM-5: on the role of mesoporosity on catalyst performance. Catal. Sci. Technol 6, 5320–5325 (2016).

    Article  CAS  Google Scholar 

  60. Mole, T., Whiteside, J. A. & Seddon, D. Aromatic co-catalysis of methanol conversion over zeolite catalysts. J. Catal. 82, 261–266 (1983).

    Article  CAS  Google Scholar 

  61. Wu, W. Z., Guo, W. Y., Xiao, W. D. & Luo, M. Dominant reaction pathway for methanol conversion to propene over high silicon H-ZSM-5. Chem. Eng. Sci. 66, 4722–4732 (2011).

    Article  CAS  Google Scholar 

  62. Ilias, S., Khare, R., Malek, A. & Bhan, A. A descriptor for the relative propagation of the aromatic- and olefin-based cycles in methanol-to-hydrocarbons conversion on H-ZSM-5. J. Catal. 303, 135–140 (2013).

    Article  CAS  Google Scholar 

  63. Ilias, S. & Bhan, A. Tuning the selectivity of methanol-to-hydrocarbons conversion on H-ZSM-5 by co-processing olefin or aromatic compounds. J. Catal. 290, 186–192 (2012).

    Article  CAS  Google Scholar 

  64. Khare, R. & Bhan, A. Mechanistic studies of methanol-to-hydrocarbons conversion on diffusion-free MFI samples. J. Catal. 329, 218–228 (2015).

    Article  CAS  Google Scholar 

  65. Ito, H. et al. Method for production of lower olefin. European patent EP1955989 A1 (2008).

  66. Chikamatsu, N., Funatsu, S., Ito, H., Oyama, K. & Yoshida, J. Propylene production process and propylene production apparatus. EP2058290 A1; (2009).

  67. Smit, B. & Maesen, T. L. M. Towards a molecular understanding of shape selectivity. Nature 451, 671–678 (2008).

    Article  CAS  PubMed  Google Scholar 

  68. Hereijgers, B. P. C. et al. Product shape selectivity dominates the methanol-to-olefins (MTO) reaction over H-SAPO-34 catalysts. J. Catal. 264, 77–87 (2009).

    Article  CAS  Google Scholar 

  69. Chen, D., Moljord, K., Fuglerud, T. & Holmen, A. The effect of crystal size of SAPO-34 on the selectivity and deactivation of the MTO reaction. Microporous Mesoporous Mater 29, 191–203 (1999).

    Article  CAS  Google Scholar 

  70. Moliner, M., Martínez, C. & Corma, A. Synthesis strategies for preparing useful small pore zeolites and zeotypes for gas separations and catalysis. Chem. Mater. 26, 246–258 (2014).

    Article  CAS  Google Scholar 

  71. Zhong, J. et al. Increasing the selectivity to ethylene in the MTO reaction by enhancing diffusion limitation in the shell layer of SAPO-34 catalyst. Chem. Commun. 54, 3146–3149 (2018).

    Article  CAS  Google Scholar 

  72. Li, J. et al. Cavity controls the selectivity: insights of confinement effects on MTO reaction. ACS Catal 5, 661–665 (2015).

    Article  CAS  Google Scholar 

  73. Yarulina, I. et al. Methanol-to-olefins process over zeolite catalysts with DDR topology: effect of composition and structural defects on catalytic performance. Catal. Sci. Technol 6, 2663–2678 (2016).

    Article  CAS  Google Scholar 

  74. Chen, D., Moljord, K. & Holmen, A. A methanol to olefins review: diffusion, coke formation and deactivation SAPO type catalysts. Microporous Mesoporous Mater 164, 239–250 (2012).

    Article  CAS  Google Scholar 

  75. Haw, J. F., Song, W. G., Marcus, D. M. & Nicholas, J. B. The mechanism of methanol to hydrocarbon catalysis. Acc. Chem. Res. 36, 317–326 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Chen, J. et al. Spatial confinement effects of cage-type SAPO molecular sieves on product distribution and coke formation in methanol-to-olefin reaction. Catal. Commun. 46, 36–40 (2014).

    Article  CAS  Google Scholar 

  77. Bhawe, Y. et al. Effect of cage size on the selective conversion of methanol to light olefins. ACS Catal 2, 2490–2495 (2012).

    Article  CAS  Google Scholar 

  78. Dusselier, M., Deimund, M. A., Schmidt, J. E. & Davis, M. E. Methanol-to-olefins catalysis with hydrothermally treated zeolite SSZ-39. ACS Catal 5, 6078–6085 (2015).

    Article  CAS  Google Scholar 

  79. Pinilla-Herrero, I., Olsbye, U., Márquez-Álvarez, C. & Sastre, E. Effect of framework topology of SAPO catalysts on selectivity and deactivation profile in the methanol-to-olefins reaction. J. Catal. 352, 191–207 (2017).

    Article  CAS  Google Scholar 

  80. Kang, J. H. et al. Further studies on how the nature of zeolite cavities that are bounded by small pores influences the conversion of methanol to light olefins. ChemPhysChem 19, 412–419 (2018).

    Article  CAS  PubMed  Google Scholar 

  81. Liang, T. et al. Conversion of methanol to olefins over H-ZSM-5 zeolite: reaction pathway is related to the framework aluminum siting. ACS Catal. 6, 7311–7325 (2016). A comprehensive article showing the effect of aluminium siting and location on selectivtiy and lifetime.

    Article  CAS  Google Scholar 

  82. Bleken, F. et al. Conversion of methanol over 10-ring zeolites with differing volumes at channel intersections: comparison of TNU-9, IM-5, ZSM-11 and ZSM-5. Phys. Chem. Chem. Phys. 13, 2539–2549 (2011).

    Article  CAS  PubMed  Google Scholar 

  83. Cui, Z.-M., Liu, Q., Song, W.-G. & Wan, L.-J. Insights into the mechanism of methanol-to-olefin conversion at zeolites with systematically selected framework structures. Angew. Chem. Int. Ed. 45, 6512–6515 (2006).

    Article  CAS  Google Scholar 

  84. Teketel, S., Svelle, S., Lillerud, K.-P. & Olsbye, U. Shape-selective conversion of methanol to hydrocarbons over 10-ring unidirectional-channel acidic H-ZSM-22. ChemCatChem 1, 78–81 (2009).

    Article  CAS  Google Scholar 

  85. Teketel, S. et al. Shape selectivity in the conversion of methanol to hydrocarbons: the catalytic performance of one-dimensional 10-ring zeolites: ZSM-22, ZSM-23, ZSM-48, and EU-1. ACS Catal. 2, 26–37 (2012). This article discusses how slight changes in pore dimensions profoundly affect selectivity to hydrocarbons establishing topology as a tool to control selectivity.

    Article  CAS  Google Scholar 

  86. Jamil, A. K. et al. Selective production of propylene from methanol conversion over nanosized ZSM-22 zeolites. Ind. Eng. Chem. Res. 53, 19498–19505 (2014).

    Article  CAS  Google Scholar 

  87. Molino, A. et al. Conversion of methanol to hydrocarbons over zeolite ZSM-23 (MTT): exceptional effects of particle size on catalyst lifetime. Chem. Commun. 53, 6816–6819 (2017).

    Article  CAS  Google Scholar 

  88. Ma, H. et al. Reaction mechanism for the conversion of methanol to olefins over H-ITQ-13 zeolite: a density functional theory study. Catal. Sci. Technol 8, 521–533 (2018).

    Article  CAS  Google Scholar 

  89. Westgård Erichsen, M., Svelle, S. & Olsbye, U. The influence of catalyst acid strength on the methanol to hydrocarbons (MTH) reaction. Catal. Today 215, 216–223 (2013).

    Article  CAS  Google Scholar 

  90. Mikkelsen, Ø. & Kolboe, S. The conversion of methanol to hydrocarbons over zeolite H-beta. Microporous Mesoporous Mater 29, 173–184 (1999).

    Article  CAS  Google Scholar 

  91. Abubakar, S. M. et al. Structural and mechanistic investigation of a phosphate-modified HZSM-5 catalyst for methanol conversion. Langmuir 22, 4846–4852 (2006).

    Article  CAS  PubMed  Google Scholar 

  92. Liu, J. et al. Methanol to propylene: effect of phosphorus on a high silica HZSM-5 catalyst. Catal. Commun. 10, 1506–1509 (2009).

    Article  CAS  Google Scholar 

  93. Hu, S. et al. Selective formation of propylene from methanol over high-silica nanosheets of MFI zeolite. Appl. Catal. A 445, 215–220 (2012).

    Article  CAS  Google Scholar 

  94. Mei, C. et al. Selective production of propylene from methanol: mesoporosity development in high silica HZSM-5. J. Catal. 258, 243–249 (2008).

    Article  CAS  Google Scholar 

  95. Wen, M. et al. Monolithic metal-fiber@HZSM-5 core–shell catalysts for methanol-to-propylene. Microporous Mesoporous Mater 206, 8–16 (2015).

    Article  CAS  Google Scholar 

  96. Wei, R., Li, C., Yang, C. & Shan, H. Effects of ammonium exchange and Si/Al ratio on the conversion of methanol to propylene over a novel and large partical size ZSM-5. J. Nat. Gas Chem. 20, 261–265 (2011).

    Article  CAS  Google Scholar 

  97. Khare, R., Liu, Z., Han, Y. & Bhan, A. A mechanistic basis for the effect of aluminum content on ethene selectivity in methanol-to-hydrocarbons conversion on HZSM-5. J. Catal. 348, 300–305 (2017).

    Article  CAS  Google Scholar 

  98. Yarulina, I. et al. Suppression of the aromatic cycle in methanol-to-olefins reaction over ZSM-5 by post-synthetic modification using calcium. ChemCatChem 8, 3057–3063 (2016).

    Article  CAS  Google Scholar 

  99. van der Bij, H. E. & Weckhuysen, B. M. Phosphorus promotion and poisoning in zeolite-based materials: synthesis, characterisation and catalysis. Chem. Soc. Rev. 44, 7406–7428 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Danilina, N., Krumeich, F., Castelanelli, S. A. & van Bokhoven, J. A. Where are the active sites in zeolites? Origin of aluminum zoning in ZSM-5. J. Phys. Chem. C 114, 6640–6645 (2010).

    Article  CAS  Google Scholar 

  101. von Ballmoos, R. & Meier, W. M. Zoned aluminium distribution in synthetic zeolite ZSM-5. Nature 289, 782 (1981).

    Article  Google Scholar 

  102. Althoff, R., Schulzdobrick, B., Schüth, F. & Unger, K. Controlling the spatial distribution of aluminum in ZSM-5 crystals. Microporous Mater. 1, 207–218 (1993).

    Article  CAS  Google Scholar 

  103. Roeffaers, M. B. J. et al. Space- and time-resolved visualization of acid catalysis in ZSM-5 crystals by fluorescence microscopy. Angew. Chem. Int. Ed. 46, 1706–1709 (2007).

    Article  CAS  Google Scholar 

  104. Kox, M. H. F., Stavitski, E. & Weckhuysen, B. M. Nonuniform catalytic behavior of zeolite crystals as revealed by in situ optical microspectroscopy. Angew. Chem. Int. Ed. 46, 3652–3655 (2007).

    Article  CAS  Google Scholar 

  105. Tzoulaki, D., Heinke, L., Schmidt, W., Wilczok, U. & Kärger, J. Exploring crystal morphology of nanoporous hosts from time-dependent guest profiles. Angew. Chem. Int. Ed. 47, 3954–3957 (2008).

    Article  CAS  Google Scholar 

  106. Mores, D. et al. Space- and time-resolved in-situ spectroscopy on the coke formation in molecular sieves: methanol-to-olefin conversion over H-ZSM-5 and H-SAPO-34. Chem. Eur. J 14, 11320–11327 (2008).

    Article  CAS  PubMed  Google Scholar 

  107. Mores, D., Kornatowski, J., Olsbye, U. & Weckhuysen, B. M. Coke formation during the methanol-to-olefin conversion: in situ microspectroscopy on individual H-ZSM-5 crystals with different brønsted acidity. Chem. Eur. J 17, 2874–2884 (2011).

    Article  CAS  PubMed  Google Scholar 

  108. Perea, D. E. et al. Determining the location and nearest neighbours of aluminium in zeolites with atom probe tomography. Nat. Commun. 6, 7589 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Schmidt, J. E. et al. coke formation in a zeolite crystal during the methanol-to-hydrocarbons reaction as studied with atom probe tomography. Angew. Chem. Int. Ed. 55, 11173–11177 (2016). In this article, atom probe tomography was used to spatially resolve the 3D compositional changes at the sub-nm length scale in a partially deactivated single zeolite ZSM-5 crystal after the methanol-to-hydrocarbon reaction.

    Article  CAS  Google Scholar 

  110. Bleken, F. et al. The effect of acid strength on the conversion of methanol to olefins over acidic microporous Catalysts with the CHA topology. Top. Catal 52, 218–228 (2009).

    Article  CAS  Google Scholar 

  111. Westgård Erichsen, M. et al. How zeolitic acid strength and composition alter the reactivity of alkenes and aromatics towards methanol. J. Catal. 328, 186–196 (2015).

    Article  CAS  Google Scholar 

  112. Goetze, J. et al. Insights into the activity and deactivation of the methanol-to-olefins process over different small-pore zeolites as studied with operando UV–vis spectroscopy. ACS Catal 7, 4033–4046 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Goetze, J., Yarulina, I., Gascon, J., Kapteijn, F. & Weckhuysen, B. M. Revealing lattice expansion of small-pore zeolite catalysts during the methanol-to-olefins process using combined operando X-ray diffraction and UV–vis spectroscopy. ACS Catal 8, 2060–2070 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Chowdhury, A. D. et al. Electrophilic aromatic substitution over zeolites generates Wheland-type reaction intermediates. Nat. Catal 1, 23–31 (2018).

    Article  Google Scholar 

  115. Vogt, C., Weckhuysen, B. M. & Ruiz-Martínez, J. Effect of feedstock and catalyst impurities on the methanol-to-olefin reaction over H-SAPO-34. ChemCatChem 9, 183–194 (2017).

    Article  CAS  PubMed  Google Scholar 

  116. Gao, P. et al. Direct conversion of CO2 into liquid fuels with high selectivity over a bifunctional catalyst. Nat. Chem 9, 1019 (2017).

    Article  CAS  PubMed  Google Scholar 

  117. Jiao, F. et al. Selective conversion of syngas to light olefins. Science 351, 1065–1068 (2016).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bert M. Weckhuysen or Jorge Gascon.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yarulina, I., Chowdhury, A.D., Meirer, F. et al. Recent trends and fundamental insights in the methanol-to-hydrocarbons process. Nat Catal 1, 398–411 (2018). https://doi.org/10.1038/s41929-018-0078-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-018-0078-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing