Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Catalytic chemoselective functionalization of methane in a metal−organic framework

Abstract

Methane constitutes the largest fraction of natural gas reserves and is a low-cost abundant starting material for the synthesis of value-added chemicals and fuel. Selective catalytic functionalization of methane remains a vital goal in the chemical sciences due to its low intrinsic reactivity. Borylation has recently emerged as a promising route for the catalytic functionalization of methane. A major challenge in this regard is selective borylation towards the monoborylated product that is more active than methane and can easily lead to over-functionalization. Herein, we report a highly selective microporous metal−organic-framework-supported iridium(iii) catalyst for methane borylation that exhibits a chemoselectivity of >99% (mono versus bis at 19.5% yield; turnover number = 67) for monoborylated methane, with bis(pinacolborane) as the borylation reagent in dodecane, at 150 °C and 34 atm of methane. The preference for the monoborylated product is ascribed to the shape-selective effect of the metal−organic framework pore structures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Reaction scheme of methane borylation with B2pin2.
Fig. 2: Synthetic scheme of the catalyst.
Fig. 3: Characterization of the catalyst.
Fig. 4: X-ray absorption spectroscopy characterization of the catalyst.

Similar content being viewed by others

References

  1. Cooper, J., Stamford, L., & Azapagic, A. Shale gas: a review of the economic, environmental, and social sustainability. Energy Technol. 4, 772–792 (2016).

    Article  Google Scholar 

  2. Caballero, A. & Perez, P. J. Methane as raw material in synthetic chemistry: the final frontier. Chem. Soc. Rev. 42, 8809–8820 (2013).

    Article  CAS  Google Scholar 

  3. Wang, B., Albarracin-Suazo, S., Pagan-Torres, Y. & Nikolla, E. Advances in methane conversion processes. Catal. Today 285, 147–158 (2017).

    Article  CAS  Google Scholar 

  4. Alvarez-Galvan, M. C. et al. Direct methane conversion routes to chemicals and fuels. Catal. Today 171, 15–23 (2011).

    Article  CAS  Google Scholar 

  5. Schwarz, H. Chemistry with methane: concepts rather than recipes. Angew. Chem. Int. Ed. 50, 10096–10115 (2011).

    Article  CAS  Google Scholar 

  6. Gunsalus, N. J. et al. Homogeneous functionalization of methane. Chem. Rev. 117, 8521–8573 (2017).

    Article  CAS  Google Scholar 

  7. Horn, R. & Schloegl, R. Methane activation by heterogeneous catalysis. Catal. Lett. 145, 23–39 (2015).

    Article  CAS  Google Scholar 

  8. Periana, R. A. et al. Platinum catalysts for the high-yield oxidation of methane to a methanol derivative. Science 280, 560–564 (1998).

    Article  CAS  Google Scholar 

  9. Periana, R. A., Mironov, O., Taube, D., Bhalla, G. & Jones, C. Catalytic, oxidative condensation of CH4 to CH3COOH in one step via CH activation. Science 301, 814–818 (2003).

    Article  CAS  Google Scholar 

  10. Gunsalus, N. J. et al. Homogeneous functionalization of methane. Chem. Rev. 117, 8521–8573 (2017).

    Article  CAS  Google Scholar 

  11. Mkhalid, I. A. I., Barnard, J. H., Marder, T. B., Murphy, J. M. & Hartwig, J. F. C−H activation for the construction of C−B bonds. Chem. Rev. 110, 890–931 (2010).

    Article  CAS  Google Scholar 

  12. Cook, A. K., Schimler, S. D., Matzger, A. J. & Sanford, M. S. Catalyst-controlled selectivity in the C–H borylation of methane and ethane. Science 351, 1421–1424 (2016).

    Article  CAS  Google Scholar 

  13. Smith, K. T. et al. Catalytic borylation of methane. Science 351, 1424–1427 (2016).

    Article  CAS  Google Scholar 

  14. Weisz, P. B. & Frilette, V. J. Intracrystalline and molecular-shape-selective catalysis by zeolite salts. J. Chem. Phys. 64, 382 (1960).

    Article  CAS  Google Scholar 

  15. Zaera, F. Shape-controlled nanostructures in heterogeneous catalysis. ChemSusChem 6, 1797–1820 (2013).

    Article  CAS  Google Scholar 

  16. Wei, J., Floudas, C. A., Gounaris, C. E. & Somorjai, G. A. Search engines for shape selectivity. Catal. Lett. 133, 234–241 (2009).

    Article  CAS  Google Scholar 

  17. Chen, N. Y., Kaeding, W. W. & Dwyer, F. G. Para-directed aromatic reactions over shape-selective molecular sieve zeolite catalysts. J. Am. Chem. Soc. 101, 6783–6784 (1979).

    Article  CAS  Google Scholar 

  18. Yaghi, O. M. et al. Reticular synthesis and the design of new materials. Nature 423, 705–714 (2003).

    Article  CAS  Google Scholar 

  19. Zhou, H. C., Long, J. R. & Yaghi, O. M. Introduction to metal–organic frameworks. Chem. Rev. 112, 673–674 (2012).

    Article  CAS  Google Scholar 

  20. Lee, J. et al. Metal–organic framework materials as catalysts. Chem. Soc. Rev. 38, 1450–1459 (2009).

    Article  CAS  Google Scholar 

  21. Warren, J. E. et al. Shape selectivity by guest-driven restructuring of a porous material. Angew. Chem. Int. Ed. 53, 4592–4596 (2014).

    Article  CAS  Google Scholar 

  22. Cavka, J. H. et al. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J. Am. Chem. Soc. 130, 13850–13851 (2008).

    Article  Google Scholar 

  23. Kanemitsu, H., Harada, R. & Ogo, S. A water-soluble iridium(iii) porphyrin. Chem. Commun. 46, 3083–3085 (2010).

    Article  CAS  Google Scholar 

  24. Li, Q., Liskey, C. W. & Hartwig, J. F. Regioselective borylation of the C–H bonds in alkylamines and alkyl ethers. Observation and origin of high reactivity of primary C–H bonds beta to nitrogen and oxygen. J. Am. Chem. Soc. 136, 8755–8765 (2014).

    Article  CAS  Google Scholar 

  25. Lawrence, J. D., Takahashi, M., Bae, C. & Hartwig, J. F. Regiospecific functionalization of methyl C−H bonds of alkyl groups in reagents with heteroatom functionality. J. Am. Chem. Soc. 126, 15334–15335 (2004).

    Article  CAS  Google Scholar 

  26. Hartwig, J. F. Regioselectivity of the borylation of alkanes and arenes. Chem. Soc. Rev. 40, 1992–2002 (2011).

    Article  CAS  Google Scholar 

  27. Chen, H., Schlecht, S., Semple, T. C. & Hartwig, J. F. Thermal, catalytic, regiospecific functionalization of alkanes. Science 287, 1995–1997 (2000).

    Article  CAS  Google Scholar 

  28. Pump, E. et al. Exploiting confinement effects to tune selectivity in cyclooctane metathesis. ACS Catal. 7, 6581–6586 (2017).

    Article  CAS  Google Scholar 

  29. Yuan, J., Fracaroli, A. M. & Klemperer, W. G. Convergent synthesis of a metal–organic framework supported olefin metathesis catalyst. Organometallics 35, 2149–2155 (2016).

    Article  CAS  Google Scholar 

  30. Chen, T. et al. Confinement effects of metal–organic framework on the formation of charge-transfer tetrathiafulvalene dimers. Inorg. Chem. 55, 12758–12765 (2016).

    Article  CAS  Google Scholar 

  31. Medders, G. R. & Paesani, F. Water dynamics in metal–organic frameworks: effects of heterogeneous confinement predicted by computational spectroscopy. J. Phys. Chem. Lett. 5, 2897–2902 (2014).

    Article  CAS  Google Scholar 

  32. Gomez, D. A., Combariza, A. F. & Sastre, G. Confinement effects in the hydrogen adsorption on paddle wheel containing metal–organic frameworks. Phys. Chem. Chem. Phys. 14, 2508–2517 (2012).

    Article  CAS  Google Scholar 

  33. Furukawa, H., Cordova, K. E., O’Keeffe, M. & Yaghi, O. M. The chemistry and applications of metal–organic frameworks. Science 341, 1230444 (2013).

    Article  Google Scholar 

  34. Srivastan, S., Darwish, N. A., Gasem, K. A. M. & Robinson, R. L. Solubility of methane in hexane, decane, and dodecane at temperatures from 311 to 423 K and pressures to 10.4 MPa. J. Chem. Eng. Data 37, 516–520 (1992).

    Article  CAS  Google Scholar 

  35. Darwish, N. A., Gasem, K. A. M. & Robinson, R. L. Solubility of methane in cyclohexane and in trans-decalin at temperatures from 323 to 423 K at pressures to 9.6 MPa. J. Chem. Eng. Data 43, 238–240 (1998).

    Article  CAS  Google Scholar 

  36. Wang, Y. et al. Engineering catalytic coordination space in a chemically stable Ir-porphyrin MOF with a confinement effect inverting conventional Si–H insertion chemoselectivity. Chem. Sci. 8, 775–780 (2017).

    Article  CAS  Google Scholar 

  37. Gonzalez, M. I., Bloch, E. D., Mason, J. A., Teat, S. J. & Long, J. R. Single-crystal-to-single-crystal metalation of a metal–organic framework: a route toward structurally well-defined catalysts. Inorg. Chem. 54, 2995–3005 (2015).

    Article  CAS  Google Scholar 

  38. Hartwig, J. F. et al. Rhodium boryl complexes in the catalytic, terminal functionalization of alkanes. J. Am. Chem. Soc. 127, 2538–2552 (2005).

    Article  CAS  Google Scholar 

  39. Hartwig, J. F. Borylation and silylation of C–H bonds: a platform for diverse C–H bond functionalizations. Acc. Chem. Res. 45, 864–873 (2012).

    Article  CAS  Google Scholar 

  40. Tamura, H., Yamazaki, H., Sato, H. & Sakaki, S. Iridium-catalyzed borylation of benzene with diboron. Theoretical elucidation of catalytic cycle including unusual iridium(v) intermediate. J. Am. Chem. Soc. 125, 16114–16126 (2003).

    Article  CAS  Google Scholar 

  41. Boller, T. M. et al. Mechanism of the mild functionalization of arenes by diboron reagents catalyzed by iridium complexes. Intermediacy and chemistry of bipyridine-ligated iridium trisboryl complexes. J. Am. Chem. Soc. 127, 14263–14278 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported as part of the Inorganometallic Catalyst Design Center, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Basic Energy Sciences, under award DESC0012702. Use of the Advanced Photon Source at the Argonne National Laboratory is supported by the US Department of Energy, Office of Science, Basic Energy Sciences, under contract DE-AC-02-06CH11357. MRCAT operations are supported by the Department of Energy and the MRCAT member institutions. This work made use of the IMSERC, Jerome B. Cohen X-Ray Diffraction, EPIC and KECK II facilities of Northwestern University’s NUANCE Center, which has received support from the Soft and Hybrid Nanotechnology Experimental Resource (NSF ECCS-1542205), the MRSEC programme (NSF DMR-1121262) at the Materials Research Center, the International Institute for Nanotechnology, the Keck Foundation and the State of Illinois, through the International Institute for Nanotechnology.

Author information

Authors and Affiliations

Authors

Contributions

X.Z., M.D. and O.K.F. designed the experiments. X.Z. and Z.H. carried out the synthesis of the materials with help from P.L. and T.C.W. under the supervision of M.D. and O.K.F. M.F. and Z.H. performed the high-throughput catalysis under the supervision of M.D. and O.K.F. X.Z., Z.H. and D.Y. characterized the materials and analysed the data with help from L.R. under the supervision of M.D. and O.K.F. X.Z., Z.H., L.R., M.D. and O.K.F. wrote the manuscript with contributions from all authors.

Corresponding authors

Correspondence to Massimiliano Delferro or Omar K. Farha.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods; Supplementary Figures 1–12; Supplementary Table 1; Supplementary References

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Huang, Z., Ferrandon, M. et al. Catalytic chemoselective functionalization of methane in a metal−organic framework. Nat Catal 1, 356–362 (2018). https://doi.org/10.1038/s41929-018-0069-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-018-0069-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing