Reactive metal–support interactions at moderate temperature in two-dimensional niobium-carbide-supported platinum catalysts


The reactive metal–support interaction (RMSI) offers electronic, geometric and compositional effects that can be used to tune catalytic active sites. Generally, supports other than oxides are disregarded as candidates for RMSI. Here, we report an example of non-oxide-based RMSI between platinum and Nb2CT x MXene—a recently developed, two-dimensional metal carbide. The surface functional groups of the two-dimensional carbide can be reduced, and a Pt–Nb surface alloy is formed at a moderate temperature (350 °C). Such an alloy exhibits weaker CO adsorption than monometallic platinum. Water-gas shift reaction kinetics reveals that the RMSI stabilizes the nanoparticles and creates alloy–MXene interfaces with higher H2O activation ability compared with a non-reducible support or a bulk niobium carbide. This RMSI between platinum and the niobium MXene support can be extended to other members of the MXene family and opens new avenues for the facile design and manipulation of functional bimetallic catalysts.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Characterization of Nb2CT x MXene support.
Fig. 2: Kinetics of the WGS reaction over the 1% Pt/Nb2CT x MXene catalyst.
Fig. 3: Niobium 3d XPS measurements and niobium edge XAS of Pt/Nb2CT x catalysts.
Fig. 4: In situ XAS and quasi in situ XPS of the 1% Pt/Nb2CT x catalysts.
Fig. 5: Electron microscopy and spectroscopy of the spent 1% Pt/Nb2CT x catalyst.


  1. 1.

    Yu, W., Porosoff, M. D. & Chen, J. G. Review of Pt-based bimetallic catalysis: from model surfaces to supported catalysts. Chem. Rev. 112, 5780–5817 (2012).

    CAS  Article  Google Scholar 

  2. 2.

    Sankar, M. et al. Designing bimetallic catalysts for a green and sustainable future. Chem. Soc. Rev. 41, 8099–8139 (2012).

    CAS  Article  Google Scholar 

  3. 3.

    Wang, H., Wang, C., Yan, H., Yi, H. & Lu, J. Precisely-controlled synthesis of Au@Pd core–shell bimetallic catalyst via atomic layer deposition for selective oxidation of benzyl alcohol. J. Catal. 324, 59–68 (2015).

    CAS  Article  Google Scholar 

  4. 4.

    Armbrüster, M. Intermetallic Compounds in Catalysis, Encyclopedia of Catalysis (Wiley, Weinheim, 2011).

    Google Scholar 

  5. 5.

    Penner, S. & Armbrüster, M. Formation of intermetallic compounds by reactive metal–support interaction: a frequently encountered phenomenon in catalysis. ChemCatChem 7, 374–392 (2015).

    CAS  Article  Google Scholar 

  6. 6.

    Wang, D. et al. Silicide formation on a Pt/SiO2 model catalyst studied by TEM, EELS, and EDXS. J. Catal. 219, 434–441 (2003).

    CAS  Article  Google Scholar 

  7. 7.

    Penner, S. et al. Platinum nanocrystals supported by silica, alumina and ceria: metal–support interaction due to high-temperature reduction in hydrogen. Surf. Sci. 532, 276–280 (2003).

    Article  Google Scholar 

  8. 8.

    Lukatskaya, M. R. et al. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 341, 1502–1505 (2013).

    CAS  Article  Google Scholar 

  9. 9.

    Naguib, M., Mochalin, V. N., Barsoum, M. W. & Gogotsi, Y. 25th anniversary article: MXenes: a new family of two-dimensional materials. Adv. Mater. 26, 992–1005 (2014).

    CAS  Article  Google Scholar 

  10. 10.

    Anasori, B., Lukatskaya, M. R. & Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2, 16098 (2017).

    CAS  Article  Google Scholar 

  11. 11.

    Ma, T. Y., Cao, J. L., Jaroniec, M. & Qiao, S. Z. Interacting carbon nitride and titanium carbide nanosheets for high-performance oxygen evolution. Angew. Chem. Int. Ed. 55, 1138–1142 (2016).

    CAS  Article  Google Scholar 

  12. 12.

    Ran, J. et al. Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production. Nat. Commun. 8, 13907 (2017).

    CAS  Article  Google Scholar 

  13. 13.

    Schreier, M. & Regalbuto, J. R. A fundamental study of Pt tetraammine impregnation of silica: 1. The electrostatic nature of platinum adsorption. J. Catal. 225, 190–202 (2004).

    CAS  Article  Google Scholar 

  14. 14.

    Lambert, S. et al. Synthesis of very highly dispersed platinum catalysts supported on carbon xerogels by the strong electrostatic adsorption method. J. Catal. 261, 23–33 (2009).

    CAS  Article  Google Scholar 

  15. 15.

    Lu, J., Zhang, X., Bravo-Suarez, J. J., Fujitani, T. & Oyama, S. T. Effect of composition and promoters in Au/TS-1 catalysts for direct propylene epoxidation using H2 and O2. Catal. Today 147, 186–195 (2009).

    CAS  Article  Google Scholar 

  16. 16.

    Rakhi, R., Ahmed, B., Hedhili, M. N., Anjum, D. H. & Alshareef, H. N. Effect of postetch annealing gas composition on the structural and electrochemical properties of Ti2CT x MXene electrodes for supercapacitor applications. Chem. Mater. 27, 5314–5323 (2015).

    CAS  Article  Google Scholar 

  17. 17.

    Naguib, M. et al. New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries. J. Am. Chem. Soc. 135, 15966–15969 (2013).

    CAS  Article  Google Scholar 

  18. 18.

    Sabnis, K. D. et al. Water-gas shift catalysis over transition metals supported on molybdenum carbide. J. Catal. 331, 162–171 (2015).

    CAS  Article  Google Scholar 

  19. 19.

    Shekhar, M. Water-Gas Shift Catalysis Over Supported Gold and Platinum Nanoparticles PhD thesis, Purdue Univ. (2012).

  20. 20.

    Sabnis, K. D. et al. Probing the active sites for water-gas shift over Pt/molybdenum carbide using multi-walled carbon nanotubes. J. Catal. 330, 442–451 (2015).

    CAS  Article  Google Scholar 

  21. 21.

    Balakrishnan, K. & Schwank, J. A chemisorption and XPS study of bimetallic Pt–Sn/Al2O3 catalysts. J. Catal. 127, 287–306 (1991).

    CAS  Article  Google Scholar 

  22. 22.

    Wakisaka, M. et al. Electronic structures of Pt–Co and Pt–Ru alloys for CO-tolerant anode catalysts in polymer electrolyte fuel cells studied by EC-XPS. J. Phys. Chem. B 110, 23489–23496 (2006).

    CAS  Article  Google Scholar 

  23. 23.

    Beard, B. C. & Ross, P. N. Platinum–titanium alloy formation from high-temperature reduction of a titania-impregnated platinum catalyst: implications for strong metal–support interaction. J. Phys. Chem. 90, 6811–6817 (1986).

    CAS  Article  Google Scholar 

  24. 24.

    Hammer, B., Morikawa, Y. & Nørskov, J. K. CO chemisorption at metal surfaces and overlayers. Phys. Rev. Lett. 76, 2141–2144 (1996).

    CAS  Article  Google Scholar 

  25. 25.

    Gauthier, Y. et al. Adsorption sites and ligand effect for CO on an alloy surface: a direct view. Phys. Rev. Lett. 87, 036103 (2001).

    CAS  Article  Google Scholar 

  26. 26.

    Schaidle, J. A., Schweitzer, N. M., Ajenifujah, O. T. & Thompson, L. T. On the preparation of molybdenum carbide-supported metal catalysts. J. Catal. 289, 210–217 (2012).

    CAS  Article  Google Scholar 

  27. 27.

    Cui, Y. et al. Participation of interfacial hydroxyl groups in the water-gas shift reaction over Au/MgO catalysts. Catal. Sci. Technol. 7, 5257–5266 (2017).

    CAS  Article  Google Scholar 

  28. 28.

    Hu, C. et al. In situ reaction synthesis, electrical and thermal, and mechanical properties of Nb4AlC3. J. Am. Ceram. Soc. 91, 2258–2263 (2008).

    CAS  Article  Google Scholar 

  29. 29.

    Wang, X. & Zhou, Y. Microstructure and properties of Ti3AlC2 prepared by the solid–liquid reaction synthesis and simultaneous in-situ hot pressing process. Acta Mater. 50, 3143–3151 (2002).

    Article  Google Scholar 

  30. 30.

    Bollmann, L. et al. Effect of Zn addition on the water-gas shift reaction over supported palladium catalysts. J. Catal. 257, 43–54 (2008).

    CAS  Article  Google Scholar 

Download references


Y.W. appreciates support from the Herbert L. Stiles Professorship and the ACRI Center Initiative at Iowa State University. F.H.R. acknowledges the partial support provided by the National Science Foundation. This paper is based on work supported in part by the National Science Foundation under cooperative agreement EEC-1647722. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Author information




Z.L. conceived the research and performed the synthesis and material characterizations. Y.C. and F.H.R. carried out the CO chemisorption and WGS kinetics measurements. Z.W. and J.T.M. carried out the XAS measurements. L.Z., G.M., B.X. and E.S. conducted microscopy analyses. C.M. performed the XPS experiments. Y.W. supervised and led the project.

Corresponding author

Correspondence to Yue Wu.

Ethics declarations

Competing interests

The authors have filed a patent application (US Patent application no. 62/579,364).

Additional information

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods; Supplementary Figures 1–13; Supplementary Table 1; Supplementary References

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Cui, Y., Wu, Z. et al. Reactive metal–support interactions at moderate temperature in two-dimensional niobium-carbide-supported platinum catalysts. Nat Catal 1, 349–355 (2018).

Download citation

Further reading