Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Growing highly pure semiconducting carbon nanotubes by electrotwisting the helicity

Abstract

Carbon nanotubes (CNTs) are anticipated to be the successor of silicon in next-generation integrated circuits. However, one great challenge to the practical application of this concept is the need to grow horizontal semiconducting CNT arrays with very high purity. Here we show that this roadblock can be eliminated by switching the direction of an applied electric field during synthesis. This electro-renucleation approach twists the chirality of the CNTs to produce nearly defect-free s-CNTs horizontally aligned on the substrate with less than 0.1% residual metallic CNT. In principle, this residual percentage can be further reduced to less than 1 ppm simply by tuning the CNTs’ diameters to around 1.3 nm. Electro-renucleation thus offers a potential pathway to practical applications of CNT electronics and opens up a new avenue for large-scale selective synthesis of semiconducting CNTs and other nanomaterials.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Controllably twisting the chirality of CNTs from metallic to semiconducting.
Fig. 2: High-purity s-CNT array grown by ERN method.
Fig. 3: FET fabricated on ERN-grown s-CNT array.
Fig. 4: Raman characterization of ERN-grown s-CNT array.

Similar content being viewed by others

References

  1. De Volder, M. F., Tawfick, S. H., Baughman, R. H. & Hart, A. J. Carbon nanotubes: present and future commercial applications. Science 339, 535–539 (2013).

    Article  Google Scholar 

  2. Bachtold, A., Hadley, P., Nakanishi, T. & Dekker, C. Logic circuits with carbon nanotube transistors. Science 294, 1317–1320 (2001).

    Article  CAS  Google Scholar 

  3. Shulaker, M. M. et al. Carbon nanotube computer. Nature 501, 526–530 (2013).

    Article  CAS  Google Scholar 

  4. Shulaker, M. M. et al. Three-dimensional integration of nanotechnologies for computing and data storage on a single chip. Nature 547, 74–78 (2017).

    Article  CAS  Google Scholar 

  5. Qiu, C. et al. Scaling carbon nanotube complementary transistors to 5-nm gate lengths. Science 355, 271–276 (2017).

    Article  CAS  Google Scholar 

  6. Cao, Q., Tersoff, J., Farmer, D. B., Zhu, Y. & Han, S. J. Carbon nanotube transistors scaled to a 40-nanometer footprint. Science 356, 1369–1372 (2017).

    Article  CAS  Google Scholar 

  7. Franklin, A. D. The road to carbon nanotube transistors. Nature 498, 443–444 (2013).

    Article  Google Scholar 

  8. Arnold, M. S., Green, A. A., Hulvat, J. F., Stupp, S. I. & Hersam, M. C. Sorting carbon nanotubes by electronic structure using density differentiation. Nat. Nanotechnol. 1, 60–65 (2006).

    Article  CAS  Google Scholar 

  9. Tu, X., Manohar, S., Jagota, A. & Zheng, M. DNA sequence motifs for structure-specific recognition and separation of carbon nanotubes. Nature 460, 250–253 (2009).

    Article  CAS  Google Scholar 

  10. Zhou, W., Ding, L., Yang, S. & Liu, J. Synthesis of high-density, large-diameter, and aligned single-walled carbon nanotubes by multiple-cycle growth methods. ACS Nano 5, 3849–3857 (2011).

    Article  CAS  Google Scholar 

  11. Kang, L., Zhang, S., Li, Q. & Zhang, J. Growth of horizontal semiconducting SWNT arrays with density higher than 100 tubes/mum using ethanol/methane chemical vapor deposition. J. Am. Chem. Soc. 138, 6727–6730 (2016).

    Article  CAS  Google Scholar 

  12. Hong, G. et al. Direct growth of semiconducting single-walled carbon nanotube array. J. Am. Chem. Soc. 131, 14642–14643 (2009).

    Article  CAS  Google Scholar 

  13. Ding, L. et al. Selective growth of well-aligned semiconducting single-walled carbon nanotubes. Nano Lett. 9, 800–805 (2009).

    Article  CAS  Google Scholar 

  14. Liu, B. et al. Nearly exclusive growth of small diameter semiconducting single-wall carbon nanotubes from organic chemistry synthetic end-cap molecules. Nano Lett. 15, 586–595 (2015).

    Article  CAS  Google Scholar 

  15. Zhang, S., Tong, L., Hu, Y., Kang, L. & Zhang, J. Diameter-specific growth of semiconducting SWNT arrays using uniform Mo2C solid catalyst. J. Am. Chem. Soc. 137, 8904–8907 (2015).

    Article  CAS  Google Scholar 

  16. Zhang, S. et al. Selective scission of C–O and C–C bonds in ethanol using bimetal catalysts for the preferential growth of semiconducting SWNT arrays. J. Am. Chem. Soc. 137, 1012–1015 (2015).

    Article  CAS  Google Scholar 

  17. Qin, X. et al. Growth of semiconducting single-walled carbon nanotubes by using ceria as catalyst supports. Nano Lett. 14, 512–517 (2014).

    Article  CAS  Google Scholar 

  18. Kang, L. et al. Growth of close-packed semiconducting single-walled carbon nanotube arrays using oxygen-deficient TiO2 nanoparticles as catalysts. Nano Lett. 15, 403–409 (2015).

    Article  CAS  Google Scholar 

  19. Yang, F. et al. Water-assisted preparation of high-purity semiconducting (14,4) carbon nanotubes. ACS Nano 11, 186–193 (2017).

    Article  CAS  Google Scholar 

  20. Ding, F., Harutyunyan, A. R. & Yakobson, B. I. Dislocation theory of chirality-controlled nanotube growth. Proc. Natl Acad. Sci. USA 106, 2506–2509 (2009).

    Article  CAS  Google Scholar 

  21. Liu, B., Wu, F., Gui, H., Zheng, M. & Zhou, C. Chirality-controlled synthesis and applications of single-wall carbon nanotubes. ACS Nano 11, 31–53 (2017).

    Article  CAS  Google Scholar 

  22. Zhu, Z. et al. Acoustic-assisted assembly of an individual monochromatic ultralong carbon nanotube for high on-current transistors. Sci. Adv. 2, e1601572 (2016).

    Article  Google Scholar 

  23. Zhang, S. et al. Arrays of horizontal carbon nanotubes of controlled chirality grown using designed catalysts. Nature 543, 234–238 (2017).

    Article  CAS  Google Scholar 

  24. Yang, F. et al. Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts. Nature 510, 522–524 (2014).

    Article  CAS  Google Scholar 

  25. Sanchez-Valencia, J. R. et al. Controlled synthesis of single-chirality carbon nanotubes. Nature 512, 61–64 (2014).

    Article  CAS  Google Scholar 

  26. Zhao, Q., Xu, Z., Hu, Y., Ding, F. & Zhang, J. Chemical vapor deposition synthesis of near-zigzag single-walled carbon nanotubes with stable tube-catalyst interface. Sci. Adv. 2, e1501729 (2016).

    Article  Google Scholar 

  27. Han, J., Anantram, M. P., Jaffe, R. L., Kong, J. & Dai, H. Observation and modeling of single-wall carbon nanotube bend junctions. Phys. Rev. B 57, 14983–14989 (1998).

    Article  CAS  Google Scholar 

  28. Yao, Y. et al. Temperature-mediated growth of single-walled carbon-nanotube intramolecular junctions. Nat. Mater. 6, 283–286 (2007).

    Article  CAS  Google Scholar 

  29. Wang, J. et al. Observation of charge generation and transfer during CVD growth of carbon nanotubes. Nano Lett. 16, 4102–4109 (2016).

    Article  CAS  Google Scholar 

  30. Nasibulin, A. G. et al. Charging of aerosol products during ferrocene vapor decomposition in N2 and CO atmospheres. J. Phys. Chem. C 112, 5762–5769 (2008).

    Article  CAS  Google Scholar 

  31. Gonzalez, D. et al. Single-walled carbon nanotube charging during bundling process in the gas phase. Phys. Status Solidi. 243, 3234–3237 (2006).

    Article  CAS  Google Scholar 

  32. Gonzalez, D. et al. Spontaneous charging of single-walled carbon nanotubes in the gas phase. Carbon 44, 2099–2101 (2006).

    Article  CAS  Google Scholar 

  33. Gonzalez, D. et al. Spontaneous charging of single-walled carbon nanotubes: a novel strategy for the selective substrate deposition of individual tubes at ambient temperature. Chem. Mater. 18, 5052–5057 (2006).

    Article  CAS  Google Scholar 

  34. Xiao, J. et al. Alignment controlled growth of single-walled carbon nanotubes on quartz substrates. Nano Lett. 9, 4311–4319 (2009).

    Article  CAS  Google Scholar 

  35. Ellison, G. B., Engelking, P. C. & Lineberger, W. C. An experimental determination of the geometry and electron affinity of CH3. J. Am. Chem. Soc. 100, 2556–2558 (1978).

    Article  CAS  Google Scholar 

  36. Zittel, P. F. et al. Laser photoelectron spectrometry of CH2 . Singlet–triplet splitting and electron affinity of CH2. J. Am. Chem. Soc. 98, 3731–3732 (1976).

    Article  CAS  Google Scholar 

  37. Dresselhaus, M. S., Dresselhaus, G., Jorio, A., Souza Filho, A. G. & Saito, R. Raman spectroscopy on isolated single wall carbon nanotubes. Carbon 40, 2043–2061 (2002).

    Article  CAS  Google Scholar 

  38. He, Y. et al. Evaluating bandgap distributions of carbon nanotubes via scanning electron microscopy imaging of the Schottky barriers. Nano Lett. 13, 5556–5562 (2013).

    Article  CAS  Google Scholar 

  39. Li, J. et al. Direct identification of metallic and semiconducting single-walled carbon nanotubes in scanning electron microscopy. Nano Lett. 12, 4095–4101 (2012).

    Article  CAS  Google Scholar 

  40. Li, D. et al. Direct discrimination between semiconducting and metallic single-walled carbon nanotubes with high spatial resolution by SEM. Nano Res. 10, 1896–1902 (2016).

    Article  Google Scholar 

  41. Li, D. et al. Scanning electron microscopy imaging of single-walled carbon nanotubes on substrates. Nano Res. 10, 1804–1818 (2017).

    Article  CAS  Google Scholar 

  42. Lu, W. et al. Contactless haracterization of electronic properties of nanomaterials using dielectric force microscopy. J. Phys. Chem. C. 116, 7158–7163 (2012).

    Article  CAS  Google Scholar 

  43. Wang, X. et al. Fabrication of ultralong and electrically uniform single-walled carbon nanotubes on clean substrates. Nano Lett. 9, 3137–3141 (2009).

    Article  CAS  Google Scholar 

  44. Jian, M. et al. Volatile-nanoparticle-assisted optical visualization of individual carbon nanotubes and other nanomaterials. Nanoscale 8, 13437–13444 (2016).

    Article  CAS  Google Scholar 

  45. KANG, S. J. et al. High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes. Nat. Nanotechnol. 2, 230–236 (2007).

    Article  CAS  Google Scholar 

  46. Parveen, S., Kumar, A., Husain, S. & Husain, M. Fowler Nordheim theory of carbon nanotube based field emitters. Physica B 505, 1–8 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to L. Peng (Peking University), Y. Zhang (Tsinghua University), F. Ding (Ulsan National Institute of Science and Technology, Korea), Y. Xu (Tsinghua University, China) and X. Feng (University of Central Florida, USA) for discussions. This work is financially supported by the Basic Science Center Project of National Natural Science Foundation of China (NSFC) under grant no. 51788104, the NSFC (51727805, 51672152, 51472141), the National Key Research and Development Program of China (2017YFA0205800) and the Beijing Advanced Innovation Center for Future Chips (ICFC). Q. Ji and J. Kong acknowledge support from the STC Center for Integrated Quantum Materials, NSF grant DMR-1231319.

Author information

Authors and Affiliations

Authors

Contributions

J.W., X.J., Z.L., Z.Y. and H.W. contributed to experimental setup establishment. J.W., Z.L., G.Y. and J.L. contributed to CNT growth. J.W., P.L, J.K., Y.Wu, Y.Wei and K.J. contributed to theoretical analysis. J.W., J.Z., K.Z. and D.L. contributed to FET fabrication. J.W. contributed to Raman experiments. All authors discussed the results and wrote the paper.

Corresponding authors

Correspondence to Peng Liu, Jing Kong or Kaili Jiang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisherʼs note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–3, Supplementary Figs. 1–16

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Jin, X., Liu, Z. et al. Growing highly pure semiconducting carbon nanotubes by electrotwisting the helicity. Nat Catal 1, 326–331 (2018). https://doi.org/10.1038/s41929-018-0057-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-018-0057-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing