How strain can break the scaling relations of catalysis


Heterogeneous catalysts control the rates of chemical reactions by changing the energy levels of bound intermediates relative to one another. However, the design flexibility in catalysis is limited by scaling relations: when a catalyst binds one adsorbate more strongly, it tends to bind similar adsorbates more strongly as well. Here we show how strain can break this constraint by employing a mechanics-based eigenstress model to rationalize the effect of strain on adsorbate–catalyst bonding. This model suggests that the sign of the binding-energy response to strain depends on the coupling of the adsorbate-induced eigenstress with the applied strain; thus, tensile strain can make binding either stronger or weaker, depending on the eigenstress characteristics of the adsorbate on the surface. We then suggest how these principles can be used in conjunction with anisotropic strain to engineer opposite responses of adjacent adsorbates to strain; such effects are expected to allow larger changes to reaction rates than predicted by scaling relations.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Illustration of adsorbate and transition-state scaling relations.
Fig. 2: Site dependency of the binding-energy response to strain.
Fig. 3: Determination of the sign of eigenstress.
Fig. 4: Strain-induced deviation from the adsorbate scaling relations.
Fig. 5: Uniaxial loading.
Fig. 6: Self-diffusion on a Pt(100) surface.
Fig. 7: Self-diffusion on a Pt(111) surface.
Fig. 8: N2 association over a Pt(100) surface.


  1. 1.

    Stegelmann, C., Andreasen, A. & Campbell, C. T. Degree of rate control: How much the energies of intermediates and transition states control rates. J. Am. Chem. Soc. 131, 8077–8082 (2009).

    CAS  Article  Google Scholar 

  2. 2.

    Nørskov, J. K., Bligaard, T. & Kleis, J. Rate control and reaction engineering. Science 324, 1655–1656 (2009).

    Article  Google Scholar 

  3. 3.

    Avanesian, T. & Christopher, P. Scaled degree of rate control: identifying elementary steps that control differences in performance of transition-metal catalysts. ACS Catal. 6, 5268–5272 (2016).

    CAS  Article  Google Scholar 

  4. 4.

    Abild-Pedersen, F. et al. Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces. Phys. Rev. Lett. 99, 16105 (2007).

    CAS  Article  Google Scholar 

  5. 5.

    Nørskov, J. et al. Universality in heterogeneous catalysis. J. Catal. 209, 275–278 (2002).

    Article  Google Scholar 

  6. 6.

    Wang, S. et al. Universal transition state scaling relations for (de)hydrogenation over transition metals. Phys. Chem. Chem. Phys. 13, 20760–20765 (2011).

    CAS  Article  Google Scholar 

  7. 7.

    Sutton, J. E. & Vlachos, D. G. A theoretical and computational analysis of linear free energy relations for the estimation of activation energies. ACS Catal. 2, 1624–1634 (2012).

    CAS  Article  Google Scholar 

  8. 8.

    Bronsted, J. N. Acid and basic catalysis. Chem. Rev. 5, 231–338 (1928).

    CAS  Article  Google Scholar 

  9. 9.

    Bell, R. P. The theory of reactions involving proton transfers. Proc. R. Soc. A 154, 414–429 (1936).

    Article  Google Scholar 

  10. 10.

    Evans, M. G. & Polanyi, M. Inertia and driving force of chemical reactions. Trans. Faraday Soc. 34, 11–24 (1938).

    CAS  Article  Google Scholar 

  11. 11.

    Wang, P. et al. Breaking scaling relations to achieve low-temperature ammonia synthesis through LiH-mediated nitrogen transfer and hydrogenation. Nat. Chem. 9, 64–70 (2017).

    CAS  Google Scholar 

  12. 12.

    Gani, T. Z. H. & Kulik, H. J. Understanding and breaking scaling relations in single-site catalysis: methane to methanol conversion by FeIV=O. ACS Catal. 8, 975–986 (2018).

    CAS  Article  Google Scholar 

  13. 13.

    Calle-Vallejo, F., Krabbe, A. & Garcia-Lastra, J. M. How covalence breaks adsorption-energy scaling relations and solvation restores them. Chem. Sci. 8, 124–130 (2017).

    CAS  Article  Google Scholar 

  14. 14.

    Xu, Y. et al. Effect of Ag on the control of Ni-catalyzed carbon formation: A density functional theory study. Catal. Today 186, 54–62 (2012).

    CAS  Article  Google Scholar 

  15. 15.

    Montemore, M. M. & Medlin, J. W. Scaling relations between adsorption energies for computational screening and design of catalysts. Catal. Sci. Technol. 4, 3748–3761 (2014).

    CAS  Article  Google Scholar 

  16. 16.

    Greeley, J. Theoretical heterogeneous catalysis: scaling relationships and computational catalyst design. Annu. Rev. Chem. Biomol. Eng. 7, 605–635 (2016).

    Article  Google Scholar 

  17. 17.

    Li, Y. & Sun, Q. Recent advances in breaking scaling relations for effective electrochemical conversion of CO2. Adv. Energy Mater. 6, 1600463 (2016).

    Article  Google Scholar 

  18. 18.

    Luo, M. & Guo, S. Strain-controlled electrocatalysis on multimetallic nanomaterials. Nat. Rev. Mater. 2, 1–13 (2017).

    Article  Google Scholar 

  19. 19.

    Weissmüller, J. Electrocapillarity of Solids and its Impact on Heterogeneous Catalysis, 163–220 (Wiley-VCH, Weinheim, 2013).

  20. 20.

    Deng, Q., Smetanin, M. & Weissmüller, J. Mechanical modulation of reaction rates in electrocatalysis. J. Catal. 309, 351–361 (2014).

    CAS  Article  Google Scholar 

  21. 21.

    Yang, Y., Adit Maark, T., Peterson, A. & Kumar, S. Elastic strain effects on catalysis of a PdCuSi metallic glass thin film. Phys. Chem. Chem. Phys. 17, 1746–1754 (2015).

    CAS  Article  Google Scholar 

  22. 22.

    Yan, K. et al. The influence of elastic strain on catalytic activity in the hydrogen evolution reaction. Angew. Chem. Int. Ed. 55, 6175–6181 (2016).

    CAS  Article  Google Scholar 

  23. 23.

    Yan, K., Kim, S. K., Khorshidi, A., Guduru, P. R. & Peterson, A. A. High elastic strain directly tunes the hydrogen evolution reaction on tungsten carbide. J. Phys. Chem. C. 121, 6177–6183 (2017).

    CAS  Article  Google Scholar 

  24. 24.

    He, J. et al. The effect of surface strain on the CO-poisoned surface of Pt electrode for hydrogen adsorption. J. Catal. 350, 212–217 (2017).

    CAS  Article  Google Scholar 

  25. 25.

    Kibler, L. A., El-Aziz, A. M., Hoyer, R. & Kolb, D. M. Tuning reaction rates by lateral strain in a palladium monolayer. Angew. Chem. Int. Ed. 44, 2080–2084 (2005).

    CAS  Article  Google Scholar 

  26. 26.

    Stafford, G. R. & Bertocci, U. In situ stress and nanogravimetric measurements during underpotential deposition of Pd on (111)-textured Au. J. Phys. Chem. C. 113, 261–268 (2009).

    CAS  Article  Google Scholar 

  27. 27.

    Sethuraman, V. A. et al. Role of elastic strain on electrocatalysis of oxygen reduction reaction on Pt. J. Phys. Chem. C. 119, 19042–19052 (2015).

    CAS  Article  Google Scholar 

  28. 28.

    Strasser, P. et al. Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts. Nat. Chem. 2, 454–460 (2010).

    CAS  Article  Google Scholar 

  29. 29.

    Hammer, B. & Nørskov, J. K. Electronic factors determining the reactivity of metal surfaces. Surf. Sci. 343, 211–220 (1995).

    CAS  Article  Google Scholar 

  30. 30.

    Mavrikakis, M., Hammer, B. & Nørskov, J. K. Effect of strain on the reactivity of metal surfaces. Phys. Rev. Lett. 81, 2819–2822 (1998).

    Article  Google Scholar 

  31. 31.

    Kitchin, J. R., Nørskov, J. K., Barteau, M. A. & Chen, J. G. Role of strain and ligand effects in the modification of the electronic and chemical properties of bimetallic surfaces. Phys. Rev. Lett. 93, 156801 (2004).

    CAS  Article  Google Scholar 

  32. 32.

    Adit Maark, T. & Peterson, A. A. Understanding strain and ligand effects in hydrogen evolution over Pd(111) surfaces. J. Phys. Chem. C. 118, 4275–4281 (2014).

    Article  Google Scholar 

  33. 33.

    Shu, D. J., Liu, F. & Gong, X. G. Simple generic method for predicting the effect of strain on surface diffusion. Phys. Rev. B 64, 245410 (2001).

    Article  Google Scholar 

  34. 34.

    Sakong, S. & Groß, A. Dissociative adsorption of hydrogen on strained Cu surfaces. Surf. Sci. 525, 107–118 (2003).

    CAS  Article  Google Scholar 

  35. 35.

    Roudgar, A. & Groß, A. Local reactivity of metal overlayers: Density functional theory calculations of Pd on Au. Phys. Rev. B 67, 033409 (2003).

    Article  Google Scholar 

  36. 36.

    Pala, R. G. S. & Liu, F. Determining the adsorptive and catalytic properties of strained metal surfaces using adsorption-induced stress. J. Chem. Phys. 120, 7720–7724 (2004).

    CAS  Article  Google Scholar 

  37. 37.

    Liu, F., Wu, C., Yang, G. & Yang, S. CO oxidation over strained Pt(100) surface: A DFT study. J. Phys. Chem. C 119, 15500–15505 (2015).

    CAS  Article  Google Scholar 

  38. 38.

    Francis, M. F. & Curtin, W. A. Mechanical work makes important contributions to surface chemistry at steps. Nat. Commun. 6, 6261 (2015).

    CAS  Article  Google Scholar 

  39. 39.

    Deng, Q., Gopal, V. & Weissmüller, J. Less noble or more noble: How strain affects the binding of oxygen on gold. Angew. Chem. Int. Ed. 54, 12981–12985 (2015).

    CAS  Article  Google Scholar 

  40. 40.

    Shuttleworth, I. Strain engineering of H/transition metal systems. Surf. Sci. 661, 49–59 (2017).

    CAS  Article  Google Scholar 

  41. 41.

    Newns, D. M. Self-consistent model of hydrogen chemisorption. Phys. Rev. 178, 1123–1135 (1969).

    CAS  Article  Google Scholar 

  42. 42.

    Montemore, M. M. & Medlin, J. W. Site-specific scaling relations for hydrocarbon adsorption on hexagonal transition metal surfaces. J. Phys. Chem. C. 117, 20078–20088 (2013).

    CAS  Article  Google Scholar 

  43. 43.

    Mura, T. Micromechanics of Defects in Solids (Springer, Dordrecht, 1987).

  44. 44.

    Shodja, H. & Khorshidi, A. Tensor spherical harmonics theories on the exact nature of the elastic fields of a spherically anisotropic multi-inhomogeneous inclusion. J. Mech. Phys. Solids 61, 1124–1143 (2013).

    CAS  Article  Google Scholar 

  45. 45.

    Callister, W. D. Jr. Materials Science and Engineering: An Introduction (John Wiley & Sons, New York, 1997).

  46. 46.

    Moss, S. J. & Coady, C. J. Potential-energy surfaces and transition-state theory. J. Chem. Educ. 60, 455 (1983).

    CAS  Article  Google Scholar 

  47. 47.

    Antczak, G. & Ehrlich, G. Surface Diffusion: Metals, Metal Atoms, and Clusters (Cambridge Univ. Press, Cambridge, 2010).

  48. 48.

    Henkelman, G., Uberuaga, B. P. & Jønsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).

    CAS  Article  Google Scholar 

  49. 49.

    Feibelman, P. J. & Stumpf, R. Adsorption-induced lattice relaxation and diffusion by concerted substitution. Phys. Rev. B 59, 5892–5897 (1999).

    CAS  Article  Google Scholar 

  50. 50.

    Agrawal, P. M., Rice, B. M. & Thompson, D. L. Predicting trends in rate parameters for self-diffusion on fcc metal surfaces. Surf. Sci. 515, 21–35 (2002).

    CAS  Article  Google Scholar 

  51. 51.

    Feibelman, P. J., Nelson, J. S. & Kellogg, G. L. Energetics of Pt adsorption on Pt(111). Phys. Rev. B 49, 10548–10556 (1994).

    CAS  Article  Google Scholar 

  52. 52.

    Bott, M., Hohage, M., Morgenstern, M., Michely, T. & Comsa, G. New approach for determination of diffusion parameters of adatoms. Phys. Rev. Lett. 76, 1304–1307 (1996).

    CAS  Article  Google Scholar 

  53. 53.

    Kyuno, K., Gölzhäuser, A. & Ehrlich, G. Growth and the diffusion of platinum atoms and dimers on Pt(111). Surf. Sci. 397, 191–196 (1998).

    CAS  Article  Google Scholar 

  54. 54.

    Feibelman, P. J. Interlayer self-diffusion on stepped Pt(111). Phys. Rev. Lett. 81, 168–171 (1998).

    CAS  Article  Google Scholar 

  55. 55.

    Brune, H. et al. Effect of strain on surface diffusion and nucleation. Phys. Rev. B 52, R14380–R14383 (1995).

    CAS  Article  Google Scholar 

  56. 56.

    Wang, H. et al. Direct and continuous strain control of catalysts with tunable battery electrode materials. Science 354, 1031–1036 (2016).

    CAS  Article  Google Scholar 

Download references


The authors are grateful to the Army Research Office (ARO) for funding under Award W911NF-11-1-0353. We benefited from the fruitful discussions with W. A. Curtin at École Polytechnique Fédérale de Lausanne, P. R. Guduru at Brown University, B. Hammer at Aarhus University and H. Ashouri-Choshali at Worcester Polytechnic Institute. High-performance computational work was carried out at Brown’s Center for Computation & Visualization (CCV).

Author information




A.K. and A.A.P. collaboratively designed the research. A.K. and J.V. performed the calculations of self-diffusion on a Pt(100) surface. A.K. performed all other calculations of the paper. A.K. and A.A.P. collaboratively analysed the data, developed the eigenstress model, wrote the paper and prepared revisions. J.H. gave the idea of projecting the d-band along different directions.

Corresponding author

Correspondence to Andrew A. Peterson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–5; Supplementary Figures 1–15; Supplementary Tables 1 and 2; Supplementary References

Supplementary Data Set 1

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khorshidi, A., Violet, J., Hashemi, J. et al. How strain can break the scaling relations of catalysis. Nat Catal 1, 263–268 (2018).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing