Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Complex dynamics in a two-enzyme reaction network with substrate competition


Enzymatic reaction networks capable of generating complex spatiotemporal dynamics are not only the basis of essential biological processes, but also the basic units of synthetic systems with autonomous, adaptive and programmable behaviours. Activation and inhibition have been usually considered as indispensable interactions for the construction of such networks. Here we present an enzymatic reaction network that consists of a flavin adenine dinucleotide-dependent oxidoreductase and a peroxidase that can generate tunable complex dynamics. These include charging/discharging, rectangular and parabolic pulses in a closed system, which are based on delayed and self-adapting substrate competition, rather than on activation or inhibition. Additionally, this system can spontaneously form visible spatiotemporal patterns that arise from reaction-driven Rayleigh–Bénard convection. This work demonstrates that substrate competition could be an alternative path towards constructing biochemical networks with complex dynamics.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Examples of complex dynamic behaviour generated by enzymatic networks under batch conditions.
Fig. 2: Tuning the network output to create various pulse waveforms.
Fig. 3: Pulse response can be reactivated by controlling the oxygen flux.
Fig. 4: The formation and evolution of spatiotemporal patterns.


  1. 1.

    van Roekel, H. W. H. et al. Programmable chemical reaction networks: emulating regulatory functions in living cells using a bottom-up approach. Chem. Soc. Rev. 44, 7465–7483 (2015).

    Article  Google Scholar 

  2. 2.

    Kondo, S. & Miura, T. Reaction–diffusion model as a framework for understanding biological pattern formation. Science 329, 1616–1620 (2010).

    CAS  Article  Google Scholar 

  3. 3.

    Grzybowski, B. A. & Huck, W. T. S. The nanotechnology of life-inspired systems. Nat. Nanotechnol. 11, 584–591 (2016).

    Article  Google Scholar 

  4. 4.

    Merindol, R. & Walther, A. Materials learning from life: concepts for active, adaptive and autonomous molecular systems. Chem. Soc. Rev. 46, 5588–5619 (2017).

    CAS  Article  Google Scholar 

  5. 5.

    Vanag, V. K. & Epstein, I. R. Segmented spiral waves in a reaction–diffusion system. Proc. Natl Acad. Sci. USA 100, 14635–14638 (2003).

    CAS  Article  Google Scholar 

  6. 6.

    Semenov, S. N. et al. Autocatalytic, bistable, oscillatory networks of biologically relevant organic reactions. Nature 537, 656–660 (2016).

    CAS  Article  Google Scholar 

  7. 7.

    Brophy, J. A. N. & Voigt, C. A. Principles of genetic circuit design. Nat. Methods 11, 508–520 (2014).

    CAS  Article  Google Scholar 

  8. 8.

    Lim, W. A. Designing customized cell signalling circuits. Nat. Rev. Mol. Cell Biol. 11, 393–403 (2010).

    CAS  Article  Google Scholar 

  9. 9.

    Lu, T. K., Khalil, A. S. & Collins, J. J. Next-generation synthetic gene networks. Nat. Biotechnol. 27, 1139–1150 (2009).

    CAS  Article  Google Scholar 

  10. 10.

    Novak, B. & Tyson, J. J. Design principles of biochemical oscillators. Nat. Rev. Mol. Cell Biol. 9, 981–991 (2008).

    CAS  Article  Google Scholar 

  11. 11.

    Basu, S., Mehreja, R., Thiberge, S., Chen, M. T. & Weiss, R. Spatiotemporal control of gene expression with pulse-generating networks. Proc. Natl Acad. Sci. USA 101, 6355–6360 (2004).

    CAS  Article  Google Scholar 

  12. 12.

    Han, D. et al. A cascade reaction network mimicking the basic functional steps of adaptive immune response. Nat. Chem. 7, 836–842 (2015).

    Article  Google Scholar 

  13. 13.

    Okar, D. A., Wu, C. & Lange, A. J. Regulation of the regulatory enzyme, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. Adv. Enzyme Regul. 44, 123–154 (2004).

    CAS  Article  Google Scholar 

  14. 14.

    Kholodenko, B. N. Cell-signalling dynamics in time and space. Nat. Rev. Mol. Cell Biol. 7, 165–176 (2006).

    CAS  Article  Google Scholar 

  15. 15.

    Jensen, K. J., Moyer, C. B. & Janes, K. A. Network architecture predisposes an enzyme to either pharmacologic or genetic targeting. Cell Syst. 2, 112–121 (2016).

    CAS  Article  Google Scholar 

  16. 16.

    Semenov, S. N. et al. Rational design of functional and tunable oscillating enzymatic networks. Nat. Chem. 7, 160–165 (2015).

    CAS  Article  Google Scholar 

  17. 17.

    Nijemeisland, M., Abdelmohsen, L. K. E. A., Huck, W. T. S., Wilson, D. A. & van Hest, J. C. M. A compartmentalized out-of-equilibrium enzymatic reaction network for sustained autonomous movement. ACS Cent. Sci. 2, 843–849 (2016).

    CAS  Article  Google Scholar 

  18. 18.

    Kim, S. Y. & Ferrell, J. E. Substrate competition as a source of ultrasensitivity in the inactivation of Wee1. Cell 128, 1133–1145 (2007).

    CAS  Article  Google Scholar 

  19. 19.

    Gibson, Q. H., Swoboda, B. E. P. & Massey, V. Kinetics and mechanism of action of glucose oxidase. J. Biol. Chem. 239, 3927–3934 (1964).

    CAS  Google Scholar 

  20. 20.

    Zhao, J., Lu, C. & Franzen, S. Distinct enzyme–substrate interactions revealed by two- dimensional kinetic comparison between dehaloperoxidase-hemoglobin and horseradish peroxidase. J. Phys. Chem. B 119, 12828–12837 (2015).

    CAS  Article  Google Scholar 

  21. 21.

    Zhang, Y., Wang, Q. & Hess, H. Increasing enzyme cascade throughput by pH-engineering the microenvironment of individual enzymes. ACS Catal. 7, 2047–2051 (2017).

    CAS  Article  Google Scholar 

  22. 22.

    Campbell, J. A. Kinetics—early and often. J. Chem. Educ. 40, 578–583 (1963).

    CAS  Article  Google Scholar 

  23. 23.

    Rajchakit, U. & Limpanuparb, T. Greening the traffic light: air oxidation of vitamin C catalyzed by indicators. J. Chem. Educ. 93, 1486–1489 (2016).

    CAS  Article  Google Scholar 

  24. 24.

    Belintsev, B. N. Dissipative structures and the problem of biological pattern-formation. Sov. Phys. Usp. 26, 775–800 (1983).

    Article  Google Scholar 

  25. 25.

    Turing, A. M. The chemical basis of morphogenesis. Phil. Trans. R. Soc. Lond. B 237, 37–72 (1952).

    Article  Google Scholar 

  26. 26.

    Manneville, P. in Dynamics of Spatio-temporal Cellular Structures (eds Mutabazi, I., Wesfreid, J. E. & Guyon, E.) 41–46 (Springer, New York, 2006)..

  27. 27.

    Avnir, D. & Kagan, M. Spatial structures generated by chemical reactions at interface. Nature 307, 717–720 (1984).

    CAS  Article  Google Scholar 

  28. 28.

    Nagypal, I., Bazsa, G. & Epstein, I. R. Gravity-induced anisotropies in chemical waves. J. Am. Chem. Soc. 108, 3635–3640 (1986).

    CAS  Article  Google Scholar 

  29. 29.

    Rajchakit, U. & Limpanuparb, T. Rapid blue bottle experiment: autoxidation of benzoin catalyzed by redox indicators. J. Chem. Educ. 93, 1490–1494 (2016).

    CAS  Article  Google Scholar 

  30. 30.

    Pons, A. J., Sagués, F., Bees, M. A. & Sørensen, P. G. Pattern formation in the methylene-blue−glucose system. J. Phys. Chem. B 104, 2251–2259 (2000).

    CAS  Article  Google Scholar 

  31. 31.

    Sengupta, S. et al. Self-powered enzyme micropumps. Nat. Chem. 6, 415–422 (2014).

    CAS  Article  Google Scholar 

  32. 32.

    Ortiz-Rivera, I., Shum, H., Agrawal, A., Sen, A. & Balazs, A. C. Convective flow reversal in self-powered enzyme micropumps. Proc. Natl Acad. Sci. USA 113, 2585–2590 (2016).

    CAS  Article  Google Scholar 

  33. 33.

    Das, S. et al. Harnessing catalytic pumps for directional delivery of microparticles in microchambers. Nat. Commun. 8, 14384 (2017).

    CAS  Article  Google Scholar 

  34. 34.

    Yang, Y., Verzicco, R. & Lohse, D. From convection rolls to finger convection in double-diffusive turbulence. Proc. Natl Acad. Sci. USA 113, 69–73 (2016).

    CAS  Article  Google Scholar 

  35. 35.

    Yang, Y. et al. Salinity transfer in bounded double diffusive convection. J. Fluid Mech. 768, 476–491 (2015).

    CAS  Article  Google Scholar 

  36. 36.

    Rongy, L., Trevelyan, P. M. & de Wit, A. Dynamics of A + B → C reaction fronts in the presence of buoyancy-driven convection. Phys. Rev. Lett. 101, 084503 (2008).

    CAS  Article  Google Scholar 

  37. 37.

    Rongy, L., Goyal, N., Meiburg, E. & de Wit, A. Buoyancy-driven convection around chemical fronts traveling in covered horizontal solution layers. J. Chem. Phys. 127, 114710 (2007).

    CAS  Article  Google Scholar 

Download references


This work was supported by the Defense Threat Reduction Agency under award no. HDTRA 1-14-1-0051.

Author information




Y.Z. and H.H. conceived and designed the research and wrote the manuscript. Y.Z. performed the experiments. S.T. performed the statistical analysis and modelling. All the authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Henry Hess.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Figures 1–13, Table 1, Notes 1 and 2, and References

Supplementary Video 1

Demonstration of green bottle experiment (20× speed).

Supplementary Video 2

Evolution of spatiotemporal patterns in the solution with a depth of 2.6 mm (20× speed).

Supplementary Video 3

Evolution of spatiotemporal patterns in the solution with a depth of 7.0 mm (20× speed).

Supplementary Video 4

Evolution of spatiotemporal patterns in the solution with a depth of 8.8 mm (20× speed).

Supplementary Video 5

Visualization of the convective flows by adding tracer particles (real-time movie).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Tsitkov, S. & Hess, H. Complex dynamics in a two-enzyme reaction network with substrate competition. Nat Catal 1, 276–281 (2018).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing