Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Foundations and strategies of the construction of hybrid catalysts for optimized performances

Abstract

Catalysts are generally classified into three categories: homogeneous, heterogeneous and enzyme, each evolved as an independent field. Efforts to bridge these fields are scarce but desirable. In this Perspective, we first describe how numerous classes of reactions can be achieved by all three categories of catalysts. Examples are given based on a selective survey of the literature. Next, a selection of important approaches, the benefits and challenges of constructing heterogeneous–homogeneous, heterogeneous–enzyme and homogeneous–enzyme hybrid catalysts are discussed based on published researches. Hybrid catalysts not only increase the performance, including activity, selectivity, lifetime and recyclability compared to one of the components, but also offer extra functions such as a microenvironment for different reaction pathways, and cascade catalysis for products that are challenging to produce. We expect future tailor-made hybrid catalysts will combine the advantages of the components and be optimized for industrial applications.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Schematic of a catalyst space with highlights on the hybrid catalysts.
Fig. 2: Illustrations of existing approaches to construct hybrid catalysts.
Fig. 3: A summary of general advantages and challenges of hybrid catalysts.

References

  1. Ye, R., Hurlburt, T. J., Sabyrov, K., Alayoglu, S. & Somorjai, G. A. Molecular catalysis science: perspective on unifying the fields of catalysis. Proc. Natl Acad. Sci. USA 113, 5159–5166 (2016).

    Article  CAS  Google Scholar 

  2. Parmeggiani, C. & Cardona, F. Transition metal based catalysts in the aerobic oxidation of alcohols. Green Chem. 14, 547–564 (2012).

    Article  CAS  Google Scholar 

  3. Brink, G.-Jt, Arends, I. W. C. E. & Sheldon, R. A. Green, catalytic oxidation of alcohols in water. Science 287, 1636–1639 (2000).

    Article  Google Scholar 

  4. Enache, D. I. et al. Solvent-Free Oxidation of Primary Alcohols to Aldehydes Using Au-Pd/TiO2 catalysts. Science 311, 362–365 (2006).

    Article  CAS  Google Scholar 

  5. Tsigos, I., Velonia, K., Smonou, I. & Bouriotis, V. Purification and characterization of an alcohol dehydrogenase from the Antarctic psychrophile Moraxella sp. TAE123. Eur. J. Biochem. 254, 356–362 (1998).

    Article  CAS  Google Scholar 

  6. Hinnemann, B. & Nørskov, J. K. Catalysis by Enzymes: the biological ammonia synthesis. Top. Catal. 37, 55–70 (2006).

    Article  CAS  Google Scholar 

  7. Schlögl, R. in Handbook of Hete rogeneous Catalysis (Wiley-VCH, GmbH & Co., KGaA, 2008).

  8. Spencer, N. D., Schoonmaker, R. C. & Somorjai, G. A. Iron single crystals as ammonia synthesis catalysts: effect of surface structure on catalyst activity. J. Catal. 74, 129–135 (1982).

    Article  CAS  Google Scholar 

  9. Yandulov, D. V. & Schrock, R. R. Catalytic reduction of dinitrogen to ammonia at a single molybdenum center. Science 301, 76–78 (2003).

    Article  CAS  Google Scholar 

  10. Pool, J. A., Lobkovsky, E. & Chirik, P. J. Hydrogenation and cleavage of dinitrogen to ammonia with a zirconium complex. Nature 427, 527–530 (2004).

    Article  CAS  Google Scholar 

  11. Pappas, I. & Chirik, P. J. Ammonia synthesis by hydrogenolysis of titanium–nitrogen bonds using proton coupled electron transfer. J. Am. Chem. Soc. 137, 3498–3501 (2015).

    Article  CAS  Google Scholar 

  12. Ertl, G., Knözinger, H. & Weitkamp, J. Handbook of Heterogeneous Catalysis (Wiley-VCH, GmbH & Co., KGaA 2008).

  13. Liu, C. et al. Single polymer growth dynamics. Science 358, 352–355 (2017).

    Article  CAS  Google Scholar 

  14. Yang, Q. & Li, C. in Bridging Heterogeneous and Homogeneous Catalysis 351–396 (Wiley-VCH, GmbH & Co., KGaA, 2014).

  15. Gates, B. C. & Lamb, H. H. Supported metals and supported organometallics. J. Mol. Catal. 52, 1–18 (1989).

    Article  CAS  Google Scholar 

  16. Marks, T. J. Surface-bound metal hydrocarbyls. Organometallic connections between heterogeneous and homogeneous catalysis. Acc. Chem. Res. 25, 57–65 (1992).

    Article  CAS  Google Scholar 

  17. Copéret, C., Chabanas, M., Petroff Saint-Arroman, R. & Basset, J.-M. Homogeneous and heterogeneous catalysis: bridging the gap through surface organometallic chemistry. Angew. Chem. Int. Ed 42, 156–181 (2003).

    Article  Google Scholar 

  18. Herron, N., Stucky, G. D. & Tolman, C. A. The reactivity of tetracarbonylnickel encapsulated in zeolite X. A case history of intrazeolite coordination chemistry. Inorg. Chim. Acta 100, 135–140 (1985).

    Article  CAS  Google Scholar 

  19. Hench, L. L. & West, J. K. The sol-gel process. Chem. Rev. 90, 33–72 (1990).

    Article  CAS  Google Scholar 

  20. Seidel, S. R. & Stang, P. J. High-symmetry coordination cages via self-assembly. Acc. Chem. Res. 35, 972–983 (2002).

    Article  CAS  Google Scholar 

  21. Rungtaweevoranit, B. et al. Copper nanocrystals encapsulated in Zr-based metal–organic frameworks for highly selective CO2 hydrogenation to methanol. Nano Lett. 16, 7645–7649 (2016).

    Article  CAS  Google Scholar 

  22. Ma, L., Abney, C. & Lin, W. Enantioselective catalysis with homochiral metal–organic frameworks. Chem. Soc. Rev. 38, 1248–1256 (2009).

    Article  CAS  Google Scholar 

  23. Ye, R., Zhukhovitskiy, A. V., Deraedt, C. V., Toste, F. D. & Somorjai, G. A. supported dendrimer-encapsulated metal clusters: toward heterogenizing homogeneous catalysts. Acc. Chem. Res. 50, 1894–1901 (2017).

    Article  CAS  Google Scholar 

  24. Sirisha, V. L., Jain, A. & Jain, A. in Adv. Food Nutr. Res. Vol. 79 (eds S.-K. Kim & F. Toldrá) 179–211 (Academic, 2016).

  25. Vennestrøm, P. N. R., Christensen, C. H., Pedersen, S., Grunwaldt, J.-D. & Woodley, J. M. Next-generation catalysis for renewables: combining enzymatic with inorganic heterogeneous catalysis for bulk chemical production. ChemCatChem 2, 249–258 (2010).

    Article  Google Scholar 

  26. Sheldon, R. A. Enzyme immobilization: the quest for optimum performance. Adv. Synth. Catal. 349, 1289–1307 (2007).

    Article  CAS  Google Scholar 

  27. Engström, K. et al. Co-immobilization of an enzyme and a metal into the compartments of mesoporous silica for cooperative tandem catalysis: an artificial metalloenzyme. Angew. Chem. Int. Ed 52, 14006–14010 (2013).

    Article  Google Scholar 

  28. Jegan Roy, J. & Emilia Abraham, T. Strategies in making cross-linked enzyme crystals. Chem. Rev. 104, 3705–3722 (2004).

    Article  CAS  Google Scholar 

  29. Cao, L., van Rantwijk, F. & Sheldon, R. A. Cross-linked enzyme aggregates: a simple and effective method for the immobilization of penicillin acylase. Org. Lett. 2, 1361–1364 (2000).

    Article  CAS  Google Scholar 

  30. Palla, K. S., Hurlburt, T. J., Buyanin, A. M., Somorjai, G. A. & Francis, M. B. Site-selective oxidative coupling reactions for the attachment of enzymes to glass surfaces through dna-directed immobilization. J. Am. Chem. Soc. 139, 1967–1974 (2017).

    Article  CAS  Google Scholar 

  31. Cabrera, Z., Fernandez-Lorente, G., Fernandez-Lafuente, R., Palomo, J. M. & Guisan, J. M. Novozym 435 displays very different selectivity compared to lipase from Candida antarctica B adsorbed on other hydrophobic supports. J. Mol. Catal. B 57, 171–176 (2009).

    Article  CAS  Google Scholar 

  32. Brady, D. & Jordaan, J. Advances in enzyme immobilisation. Biotechnol. Lett. 31, 1639 (2009).

    Article  CAS  Google Scholar 

  33. Denard, C. A., Hartwig, J. F. & Zhao, H. Multistep one-pot reactions combining biocatalysts and chemical catalysts for asymmetric synthesis. ACS Catal. 3, 2856–2864 (2013).

    Article  CAS  Google Scholar 

  34. Pàmies, O. & Bäckvall, J.-E. Combination of enzymes and metal catalysts. a powerful approach in asymmetric catalysis. Chem. Rev. 103, 3247–3262 (2003).

    Article  Google Scholar 

  35. Rudroff, F. et al. Opportunities and challenges for combining chemo- and biocatalysis. Nat. Catal. 1, 12–22 (2018).

    Article  Google Scholar 

  36. Huang, X. & Xue, L. in Bridging Heterogeneous and Homogeneous Catalysis 511–552 (Wiley-VCH, GmbH & Co., KGaA, 2014).

  37. Wang, Z. J., Clary, K. N., Bergman, R. G., Raymond, K. N. & Toste, F. D. A supramolecular approach to combining enzymatic and transition metal catalysis. Nat. Chem. 5, 100–103 (2013).

    Article  CAS  Google Scholar 

  38. Bryant, D. E. & Kranich, W. L. Dehydration of alcohols over zeolite catalysts. J. Catal. 8, 8–13 (1967).

    Article  CAS  Google Scholar 

  39. Vergnolle, O., Hahn, F., Baerga-Ortiz, A., Leadlay, P. F. & Andexer, J. N. Stereoselectivity of isolated dehydratase domains of the borrelidin polyketide synthase: implications for cis double bond formation. Chembiochem 12, 1011–1014 (2011).

    Article  CAS  Google Scholar 

  40. Northrup, A. B. & MacMillan, D. W. C. The first direct and enantioselective cross-aldol reaction of aldehydes. J. Am. Chem. Soc. 124, 6798–6799 (2002).

    Article  CAS  Google Scholar 

  41. Ricci, A. et al. Chitosan aerogel: a recyclable, heterogeneous organocatalyst for the asymmetric direct aldol reaction in water. Chem. Commun. 46, 6288–6290 (2010).

    Article  CAS  Google Scholar 

  42. Takayama, S., McGarvey, G. J. & Wong, C.-H. Enzymes in organic synthesis: recent developments in aldol reactions and glycosylations. Chem. Soc. Rev. 26, 407–415 (1997).

    Article  CAS  Google Scholar 

  43. White, M. C., Doyle, A. G. & Jacobsen, E. N. A synthetically useful, self-assembling mmo mimic system for catalytic alkene epoxidation with aqueous H2O2. J. Am. Chem. Soc. 123, 7194–7195 (2001).

    Article  CAS  Google Scholar 

  44. Song, F., Wang, C., Falkowski, J. M., Ma, L. & Lin, W. Isoreticular chiral metal−organic frameworks for asymmetric alkene epoxidation: tuning catalytic activity by controlling framework catenation and varying open channel sizes. J. Am. Chem. Soc. 132, 15390–15398 (2010).

    Article  CAS  Google Scholar 

  45. Farinas, E. T., Alcalde, M. & Arnold, F. Alkene epoxidation catalyzed by cytochrome P450 BM-3 139–3. Tetrahedron 60, 525–528 (2004).

    Article  CAS  Google Scholar 

  46. Kalló, D. & Mihályi, R. M. Mechanism of 1-butene hydration over acidic zeolite and ion-exchange resin catalysts. Appl. Catal. A 121, 45–56 (1995).

    Article  Google Scholar 

  47. Wuensch, C. et al. Asymmetric enzymatic hydration of hydroxystyrene derivatives. Angew. Chem. Int. Ed 52, 2293–2297 (2013).

    Article  CAS  Google Scholar 

  48. Xu, R. et al. Iron-catalyzed homogeneous hydrogenation of alkenes under mild conditions by a stepwise, bifunctional mechanism. ACS Catal. 6, 2127–2135 (2016).

    Article  CAS  Google Scholar 

  49. Argo, A. M., Odzak, J. F., Lai, F. S. & Gates, B. C. Observation of ligand effects during alkene hydrogenation catalysed by supported metal clusters. Nature 415, 623–626 (2002).

    Article  CAS  Google Scholar 

  50. Müller, A., Hauer, B. & Rosche, B. Asymmetric alkene reduction by yeast old yellow enzymes and by a novel Zymomonas mobilis reductase. Biotechnol. Bioeng. 98, 22–29 (2007).

    Article  Google Scholar 

  51. Langdon, S. M., Wilde, M. M. D., Thai, K. & Gravel, M. Chemoselective N-heterocyclic carbene-catalyzed cross-benzoin reactions: importance of the fused ring in triazolium salts. J. Am. Chem. Soc. 136, 7539–7542 (2014).

    Article  CAS  Google Scholar 

  52. Storey, J. M. D. & Williamson, C. Imidazole based solid-supported catalysts for the benzoin condensation. Tetrahedron Lett. 46, 7337–7339 (2005).

    Article  CAS  Google Scholar 

  53. Dünkelmann, P. et al. Development of a donor−acceptor concept for enzymatic cross-coupling reactions of aldehydes: the first asymmetric cross-benzoin condensation. J. Am. Chem. Soc. 124, 12084–12085 (2002).

    Article  Google Scholar 

  54. Ready, J. M. & Jacobsen, E. N. Highly active oligomeric (salen)co catalysts for asymmetric epoxide ring-opening reactions. J. Am. Chem. Soc. 123, 2687–2688 (2001).

    Article  CAS  Google Scholar 

  55. Baleizão, C., Gigante, B., Sabater, M. J., Garcia, H. & Corma, A. On the activity of chiral chromium salen complexes covalently bound to solid silicates for the enantioselective epoxide ring opening. Appl. Catal. A 228, 279–288 (2002).

    Article  Google Scholar 

  56. Hasnaoui-Dijoux, G., Majerić Elenkov, M., Lutje Spelberg, J. H., Hauer, B. & Janssen, D. B. Catalytic promiscuity of halohydrin dehalogenase and its application in enantioselective epoxide ring opening. Chembiochem 9, 1048–1051 (2008).

    Article  CAS  Google Scholar 

  57. Koster, R., van der Linden, B., Poels, E. & Bliek, A. The mechanism of the gas-phase esterification of acetic acid and ethanol over MCM-41. J. Catal. 204, 333–338 (2001).

    Article  CAS  Google Scholar 

  58. Kornberg, A. & Pricer, W. E. Enzymatic esterification of alpha-glycerophosphate by long chain fatty acids. J. Biol. Chem. 204, 345–357 (1953).

    CAS  Google Scholar 

  59. Carraher, J. M., Fleitman, C. N. & Tessonnier, J.-P. Kinetic and mechanistic study of glucose isomerization using homogeneous organic Brønsted base catalysts in water. ACS Catal 5, 3162–3173 (2015).

    Article  CAS  Google Scholar 

  60. Moliner, M., Román-Leshkov, Y. & Davis, M. E. Tin-containing zeolites are highly active catalysts for the isomerization of glucose in water. Proc. Natl Acad. Sci. USA 107, 6164–6168 (2010).

    Article  CAS  Google Scholar 

  61. McKay, G. A. & Tavlarides, L. L. Enzymatic isomerization kinetics of d-glucose to d-fructose. J. Mol. Catal. 6, 57–69 (1979).

    Article  CAS  Google Scholar 

  62. Furuya, T., Kamlet, A. S. & Ritter, T. Catalysis for fluorination and trifluoromethylation. Nature 473, 470–477 (2011).

    Article  CAS  Google Scholar 

  63. Pascanu, V. et al. Selective heterogeneous C−H activation/halogenation reactions catalyzed by Pd@MOF nanocomposites. Chem. Eur. J 22, 3729–3737 (2016).

    Article  Google Scholar 

  64. Blasiak, L. C. & Drennan, C. L. Structural perspective on enzymatic halogenation. Acc. Chem. Res. 42, 147–155 (2009).

    Article  CAS  Google Scholar 

  65. Zhang, B. & Breslow, R. Ester hydrolysis by a catalytic cyclodextrin dimer enzyme mimic with a metallobipyridyl linking group. J. Am. Chem. Soc. 119, 1676–1681 (1997).

    Article  CAS  Google Scholar 

  66. Katz, M. J. et al. Exploiting parameter space in MOFs: a 20-fold enhancement of phosphate-ester hydrolysis with UiO-66-NH2. Chem. Sci. 6, 2286–2291 (2015).

    Article  CAS  Google Scholar 

  67. Wu, S. H., Guo, Z. W. & Sih, C. J. Enhancing the enantioselectivity of Candida lipase-catalyzed ester hydrolysis via noncovalent enzyme modification. J. Am. Chem. Soc. 112, 1990–1995 (1990).

    Article  CAS  Google Scholar 

  68. García-Álvarez, R., Díez, J., Crochet, P. & Cadierno, V. Arene–ruthenium(ii) complexes containing inexpensive tris(dimethylamino)phosphine: highly efficient catalysts for the selective hydration of nitriles into amides. Organometallics 30, 5442–5451 (2011).

    Article  Google Scholar 

  69. Battilocchio, C., Hawkins, J. M. & Ley, S. V. Mild and selective heterogeneous catalytic hydration of nitriles to amides by flowing through manganese dioxide. Org. Lett. 16, 1060–1063 (2014).

    Article  CAS  Google Scholar 

  70. MartÍnková, L. & Křen, V. Nitrile- and amide-converting microbial enzymes: stereo-, regio- and chemoselectivity. Biocatal. Biotransform. 20, 73–93 (2002).

    Article  Google Scholar 

  71. Mahdi, T. & Stephan, D. W. Enabling catalytic ketone hydrogenation by frustrated lewis pairs. J. Am. Chem. Soc. 136, 15809–15812 (2014).

    Article  CAS  Google Scholar 

  72. Hu, A., Ngo, H. L. & Lin, W. Chiral porous hybrid solids for practical heterogeneous asymmetric hydrogenation of aromatic ketones. J. Am. Chem. Soc. 125, 11490–11491 (2003).

    Article  CAS  Google Scholar 

  73. Ni, Y. & Xu, J.-H. Biocatalytic ketone reduction: a green and efficient access to enantiopure alcohols. Biotechnol. Adv. 30, 1279–1288 (2012).

    Article  CAS  Google Scholar 

  74. Cook, A. K., Schimler, S. D., Matzger, A. J. & Sanford, M. S. Catalyst-controlled selectivity in the C–H borylation of methane and ethane. Science 351, 1421–1424 (2016).

    Article  CAS  Google Scholar 

  75. Liu, W.-C., Ralston, W. T., Melaet, G. & Somorjai, G. A. Oxidative coupling of methane (OCM): effect of noble metal (M=Pt, Ir, Rh) doping on the performance of mesoporous silica MCF-17 supported Mn x O y -Na2WO4 catalysts. Appl. Catal. A 545, 17–23 (2017).

    Article  CAS  Google Scholar 

  76. Yoshizawa, K., Ohta, T., Yamabe, T. & Hoffmann, R. Dioxygen cleavage and methane activation on diiron enzyme models: a theoretical study. J. Am. Chem. Soc. 119, 12311–12321 (1997).

    Article  CAS  Google Scholar 

  77. Chen, C., Dugan, T. R., Brennessel, W. W., Weix, D. J. & Holland, P. L. Z-Selective alkene isomerization by high-spin cobalt(ii) complexes. J. Am. Chem. Soc. 136, 945–955 (2014).

    Article  CAS  Google Scholar 

  78. Trombetta, M. et al. FT-IR studies on light olefin skeletal isomerization catalysis: iii. surface acidity and activity of amorphous and crystalline catalysts belonging to the SiO2–Al2O3 system. J. Catal. 179, 581–596 (1998).

    Article  CAS  Google Scholar 

  79. Durchschein, K. et al. Unusual C–C bond isomerization of an α, β-unsaturated γ-butyrolactone catalysed by flavoproteins from the old yellow enzyme family. Chembiochem 13, 2346–2351 (2012).

    Article  CAS  Google Scholar 

  80. Nguyen, S. T., Johnson, L. K., Grubbs, R. H. & Ziller, J. W. Ring-opening metathesis polymerization (ROMP) of norbornene by a Group viii carbene complex in protic media. J. Am. Chem. Soc. 114, 3974–3975 (1992).

    Article  CAS  Google Scholar 

  81. Kobayashi, S., Uyama, H. & Kimura, S. Enzymatic Polymerization. Chem. Rev. 101, 3793–3818 (2001).

    Article  CAS  Google Scholar 

  82. Palucki, M., Hanson, P. & Jacobsen, E. N. Asymmetric oxidation of sulfides with H2O2 catalyzed by (salen)Mn(iii) complexes. Tetrahedron Lett. 33, 7111–7114 (1992).

    Article  CAS  Google Scholar 

  83. Karimi, B., Ghoreishi-Nezhad, M. & Clark, J. H. Selective oxidation of sulfides to sulfoxides using 30% hydrogen peroxide catalyzed with a recoverable silica-based tungstate interphase catalyst. Org. Lett. 7, 625–628 (2005).

    Article  CAS  Google Scholar 

  84. Baciocchi, E., Lanzalunga, O., Malandrucco, S., Ioele, M. & Steenken, S. Oxidation of sulfides by peroxidases. involvement of radical cations and the rate of the oxygen rebound step. J. Am. Chem. Soc. 118, 8973–8974 (1996).

    Article  CAS  Google Scholar 

  85. Wu, C.-Y., Horibe, T., Jacobsen, C. B. & Toste, F. D. Stable gold(iii) catalysts by oxidative addition of a carbon-carbon bond. Nature 517, 449–454 (2015).

    Article  CAS  Google Scholar 

  86. Sippel, D. & Einsle, O. The structure of vanadium nitrogenase reveals an unusual bridging ligand. Nat. Chem. Biol. 13, 956–960 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge support from the Director, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geological and Biosciences of the US DOE under contract DEAC02-05CH11231. R.Y. and B.B.W. thank the Student Mentoring and Research Teams (SMART) program at UC Berkeley for financial support in Summer 2017.

Author information

Authors and Affiliations

Authors

Contributions

R.Y. and G.A.S. conceived the theme, R.Y. wrote the manuscript, and J.Z. designed the layouts of Fig. 1, Fig. 2, and the table of contents image. All authors contributed data and insights, discussed the argument and edited the manuscript.

Corresponding authors

Correspondence to F. Dean Toste or Gabor A. Somorjai.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ye, R., Zhao, J., Wickemeyer, B.B. et al. Foundations and strategies of the construction of hybrid catalysts for optimized performances. Nat Catal 1, 318–325 (2018). https://doi.org/10.1038/s41929-018-0052-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-018-0052-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing