Review Article | Published:

Chemically and electrochemically catalysed conversion of CO2 to CO with follow-up utilization to value-added chemicals


Carbon dioxide is ubiquitous and a vital molecule for maintaining life on our planet. However, the ever-increasing emission of anthropogenic CO2 into our atmosphere has provoked dramatic climate changes. In principle, CO2 could represent an important one-carbon building block for the chemical industry, yet its high thermodynamic and kinetic stability has limited its applicability to only a handful of industrial applications. On the other hand, carbon monoxide represents a more versatile reagent applied in many industrial transformations. Here we review the different methods for converting CO2 to CO with specific focus on the reverse water gas shift reaction, main element reductants, and electrochemical protocols applying homogeneous and heterogeneous catalysts. Particular emphasis is given to synthetic methods that couple the deoxygenation step with a follow-up carbonylation step for the synthesis of carbonyl-containing molecules, thus avoiding the need to handle or store this toxic but highly synthetically useful diatomic gas.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Change history

  • 11 December 2018

    In the version of this Review Article originally published, the received and accepted dates were missing, and the published online date of 10 April 2018 was incorrect; they should have read ‘Received: 24 December 2017; Accepted: 28 February 2018; Published online: 16 April 2018’. This has now been corrected.


  1. 1.

    Chu, S. & Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 488, 294–303 (2012).

  2. 2.

    D’Alessandro, D. M., Smit, B. & Long, J. R. Carbon dioxide capture: Prospects for new materials. Angew. Chem. Int. Ed. 49, 6058–6082 (2010).

  3. 3.

    Kondratenko, E. V., Mul, G., Baltrusaitis, J., Larrazabal, G. O. & Perez-Ramirez, J. Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes. Energy Environ. Sci. 6, 3112–3135 (2013).

  4. 4.

    Liu, Q., Wu, L., Jackstell, R. & Beller, M. Using carbon dioxide as a building block in organic synthesis. Nat. Commun. 6, 5933 (2015).

  5. 5.

    Cokoja, M., Bruckmeier, C., Rieger, B., Herrmann, W. A. & Kühn, F. E. Transformation of carbon dioxide with homogeneous transition-metal catalysts: a molecular solution to a global challenge? Angew. Chem. Int. Ed. 50, 8510–8537 (2011).

  6. 6.

    Goeppert, A., Czaun, M., Jones, J.-P., Surya Prakash, G. K. & Olah, G. A. Recycling of carbon dioxide to methanol and derived products — closing the loop. Chem. Soc. Rev. 43, 7995–8048 (2014).

  7. 7.

    Bernskoetter, W. H. & Hazari, N. Reversible hydrogenation of carbon dioxide to formic acid and methanol: Lewis acid enhancement of base metal catalysts. Acc. Chem. Res. 50, 1049–1058 (2017).

  8. 8.

    Beuls, A. et al. Methanation of CO2: further insight into the mechanism over Rh/γ-Al2O3 catalyst. Appl. Catal. B 113−114, 2–10 (2012).

  9. 9.

    Barnard, C. F. J. Palladium-catalyzed carbonylation — a reaction come of age. Organometallics 27, 5402–5422 (2008).

  10. 10.

    Brennführer, A., Neumann, H. & Beller, M. Palladium-catalyzed carbonylation reactions of aryl halides and related compounds. Angew. Chem. Int. Ed. 48, 4114–4133 (2009).

  11. 11.

    Wu, X.-F., Neumann, H. & Beller, M. Palladium-catalyzed carbonylative coupling reactions between Ar–X and carbon nucleophiles. Chem. Soc. Rev. 40, 4986–5009 (2011).

  12. 12.

    Dry, M. E. The Fischer–Tropsch process: 1950–2000 Catal. Today 71, 227–241 (2002).

  13. 13.

    Maitlis, P. M., Haynes, A., Sunley, G. J. & Howard, M. J. Methanol carbonylation revisited: thirty years on. J. Chem. Soc. Dalton Trans. 2187–2196 (1996).

  14. 14.

    Jones, J. H. The Cativa process for the manufacture of acetic acid. Iridium catalyst improves productivity in an established industrial process. Platin. Met. Rev. 44, 94–105 (2000).

  15. 15.

    Morimoto, T. & Kakiuchi, K. Evolution of carbonylation catalysis: no need for carbon monoxide. Angew. Chem. Int. Ed. 43, 5580–5588 (2004).

  16. 16.

    Wu, L., Liu, Q., Jackstell, R. & Beller, M. Carbonylations of alkenes with CO surrogates. Angew. Chem. Int. Ed. 53, 6310–6320 (2014).

  17. 17.

    Friis, S. D., Lindhardt, A. T. & Skrydstrup, T. The development and application of two-chamber reactors and carbon monoxide precursors for safe carbonylation reactions. Acc. Chem. Res. 49, 594–605 (2016).

  18. 18.

    Lehn, J. -M. & Ziessel, R. Photochemical generation of carbon monoxide and hydrogen by reduction of carbon dioxide and water under visible light irradiation. Proc. Natl Acad. Sci. USA 79, 701–704 (1982).

  19. 19.

    Rosas-Hernandez, A., Steinlechner, C., Junge, H. & Beller, M. Earth-abundant photocatalytic systems for the visible-light-driven reduction of CO2 to CO. Green Chem. 19, 2356–2360 (2017).

  20. 20.

    Daza, Y. A. & Kuhn, J. N. CO2 conversion by reverse water gas shift catalysis: comparison of catalysts, mechanisms and their consequences for CO2 conversion to liquid fuels. RSC Adv. 6, 49675–49691 (2016).

  21. 21.

    Erisman, J. W., Sutton, M. A., Galloway, J., Klimont, Z. & Winiwarter, W. How a century of ammonia synthesis changed the world. Nat. Geosci. 1, 636 (2008).

  22. 22.

    Baker, E. C., Hendriksen, D. E. & Eisenberg, R. Mechanistic studies of the homogeneous catalysis of the water gas shift reaction by rhodium carbonyl iodide. J. Am. Chem. Soc. 102, 1020–1027 (1980).

  23. 23.

    Kattel, S., Liu, P. & Chen, J. G. Tuning selectivity of CO2 hydrogenation reactions at the metal/oxide interface. J. Am. Chem. Soc. 139, 9739–9754 (2017). An excellent overview of heterogenous catalysts available for the reduction of CO 2 using the reverse water gas shift reaction.

  24. 24.

    Choi, S. et al. Catalytic behavior of metal catalysts in high-temperature RWGS reaction: in-situ FT-IR experiments and first-principles calculations. Sci. Rep. 7, 41207 (2017).

  25. 25.

    Fujitani, T. et al. Development of an active Ga2O3 supported palladium catalyst for the synthesis of methanol from carbon dioxide and hydrogen. Appl. Catal. A 125, L199–L202 (1995).

  26. 26.

    Kattel, S., Yan, B., Chen, J. G. & Liu, P. CO2 hydrogenation on Pt, Pt/SiO2 and Pt/TiO2: importance of synergy between Pt and oxide support. J. Catal. 343, 115–126 (2016).

  27. 27.

    Kattel, S. et al. CO2 hydrogenation over oxide-supported PtCo catalysts: the role of the oxide support in determining the product selectivity. Angew. Chem. Int. Ed. 55, 7968–7973 (2016).

  28. 28.

    da Silva, D. C. D., Letichevsky, S., Borges, L. E. P. & Appel, L. G. The Ni/ZrO2 catalyst and the methanation of CO and CO2. Int. J. Hydrog. Energy 37, 8923–8928 (2012).

  29. 29.

    Razzaq, R., Li, C., Usman, M., Suzuki, K. & Zhang, S. A highly active and stable Co4N/γ-Al2O3 catalyst for CO and CO2 methanation to produce synthetic natural gas (SNG). Chem. Eng. J. 262, 1090–1098 (2015).

  30. 30.

    Kharaji, A. G., Shariati, A. & Ostadi, M. Development of Ni-Mo/Al2O3 catalyst for reverse water gas shift (RWGS) reaction. J. Nanosci. Nanotechnol. 14, 6841–6847 (2014).

  31. 31.

    Kharaji, A. G., Shariati, A. & Takassi, M. A. A novel γ-alumina supported Fe–Mo bimetallic catalyst for reverse water gas shift reaction. Chin. J. Chem. Eng. 21, 1007–1014 (2013).

  32. 32.

    Fujita, S.-I., Usui, M. & Takezawa, N. Mechanism of the reverse water gas shift reaction over Cu/ZnO catalyst. J. Catal. 134, 220–225 (1992).

  33. 33.

    Tominaga, K.-i. & Sasaki, Y. Ruthenium complex-catalyzed hydroformylation of alkenes with carbon dioxide. Catal. Commun. 1, 1–3 (2000).The first example of using CO 2 for the hydroformylation of alkenes.

  34. 34.

    Tominaga, K.-i & Sasaki, Y. Ruthenium-catalyzed one-pot hydroformylation of alkenes using carbon dioxide as a reactant. J. Mol. Catal. A 220, 159–165 (2004).

  35. 35.

    Franke, R., Selent, D. & Börner, A. Applied hydroformylation. Chem. Rev. 112, 5675–5732 (2012).

  36. 36.

    Jääskeläinen, S. & Haukka, M. The use of carbon dioxide in ruthenium carbonyl catalyzed 1-hexene hydroformylation promoted by alkali metal and alkaline earth salts. Appl. Catal. A 247, 95–100 (2003).

  37. 37.

    Kontkanen, M.-L. et al. One-dimensional metal atom chain [Ru(CO)4]n as a catalyst precursor — hydroformylation of 1-hexene using carbon dioxide as a reactant. Appl. Catal. A 365, 130–134 (2009).

  38. 38.

    Tsuchiya, K., Huang, J.-D. & Tominaga, K.-i Reverse water-gas shift reaction catalyzed by mononuclear Ru complexes. ACS Catal. 3, 2865–2868 (2013).

  39. 39.

    Fujita, S. I., Okamura, S., Akiyama, Y. & Arai, M. Hydroformylation of cyclohexene with carbon dioxide and hydrogen using ruthenium carbonyl catalyst: influence of pressures of gaseous components. Int. J. Mol. Sci. 8, 749–759 (2007).

  40. 40.

    Ali, M., Gual, A., Ebeling, G. & Dupont, J. Ruthenium-catalyzed hydroformylation of alkenes by using carbon dioxide as the carbon monoxide source in the presence of ionic liquids. ChemCatChem 6, 2224–2228 (2014).

  41. 41.

    Liu, Q. et al. Development of a ruthenium/phosphite catalyst system for domino hydroformylation — reduction of olefins with carbon dioxide. Chem. Eur. J. 20, 6888–6894 (2014).

  42. 42.

    Fleischer, I. et al. Towards the development of a selective ruthenium-catalyzed hydroformylation of olefins. Chem. Eur. J. 19, 10589–10594 (2013).

  43. 43.

    Srivastava, V. K. & Eilbracht, P. Ruthenium carbonyl-complex catalyzed hydroaminomethylation of olefins with carbon dioxide and amines. Catal. Commun. 10, 1791–1795 (2009).

  44. 44.

    Ren, X. et al. Rhodium-complex-catalyzed hydroformylation of olefins with CO2 and hydrosilane. Angew. Chem. Int. Ed. 56, 310–313 (2017).

  45. 45.

    Ostapowicz, T. G., Schmitz, M., Krystof, M., Klankermayer, J. & Leitner, W. Carbon dioxide as a C1 building block for the formation of carboxylic acids by formal catalytic hydrocarboxylation. Angew. Chem. Int. Ed. 52, 12119–12123 (2013).

  46. 46.

    Wu, L., Liu, Q., Fleischer, I., Jackstell, R. & Beller, M. Ruthenium-catalysed alkoxycarbonylation of alkenes with carbon dioxide. Nat. Commun. 5, 3091 (2014). The first example of reducing CO 2 to CO using alcohols instead of dihydrogen as the reductant coupled to alkoxycarbonylation of alkenes.

  47. 47.

    Clegg, W. et al. Highly active and selective catalysts for the production of methyl propanoate via the methoxycarbonylation of ethene. Chem. Commun. 1877−1878 (1999).

  48. 48.

    Stouten, S. C., Noel, T., Wang, Q., Beller, M. & Hessel, V. Continuous ruthenium-catalyzed methoxycarbonylation with supercritical carbon dioxide. Catal. Sci. Technol. 6, 4712–4717 (2016).

  49. 49.

    Laitar, D. S., Müller, P. & Sadighi, J. P. Efficient homogeneous catalysis in the reduction of CO2 to CO. J. Am. Chem. Soc. 127, 17196–17197 (2005). The first example of reducing CO 2 to CO using alcohols instead of dihydrogen as the reductant coupled to alkoxycarbonylation of alkenes.

  50. 50.

    Zhao, H., Lin, Z. & Marder, T. B. Density functional theory studies on the mechanism of the reduction of CO2 to CO catalyzed by copper(I) boryl complexes. J. Am. Chem. Soc. 128, 15637–15643 (2006).

  51. 51.

    Kleeberg, C., Cheung, M. S., Lin, Z. & Marder, T. B. Copper-mediated reduction of CO2 with pinB-SiMe2Ph via CO2 insertion into a copper–silicon bond. J. Am. Chem. Soc. 133, 19060–19063 (2011).

  52. 52.

    Lescot, C. et al. Efficient fluoride-catalyzed conversion of CO2 to CO at room temperature. J. Am. Chem. Soc. 136, 6142–6147 (2014). A metal-free reduction of CO 2 to CO coupled to ensuing amino- and alkoxycarbonylation reaction.

  53. 53.

    Hermange, P. et al. Ex situ generation of stoichiometric and substoichiometric 12CO and 13CO and its efficient incorporation in palladium catalyzed aminocarbonylations. J. Am. Chem. Soc. 133, 6061–6071 (2011).

  54. 54.

    Flinker, M. et al. Experimental and theoretical studies on the reduction of CO2 to CO with chloro(methyl)disilane components from the direct process. Synlett 28, 2439–2444 (2017).

  55. 55.

    Ma, G., Song, G. & Li, Z. H. Theoretical design and mechanistic study of the metal-free reduction of CO2 to CO. Phys. Chem. Chem. Phys. 19, 28313–28322 (2017).

  56. 56.

    Lian, Z., Nielsen, D. U., Lindhardt, A. T., Daasbjerg, K. & Skrydstrup, T. Cooperative redox activation for carbon dioxide conversion. Nat. Commun. 7, 13782 (2016).

  57. 57.

    Lu, Q., Rosen, J. & Jiao, F. Nanostructured metallic electrocatalysts for carbon dioxide reduction. ChemCatChem 7, 38–47 (2015).

  58. 58.

    Schreier, M. et al. Solar conversion of CO2 to CO using earth-abundant electrocatalysts prepared by atomic layer modification of CuO. Nat. Energy 2, 17087 (2017).

  59. 59.

    Benson, E. E., Kubiak, C. P., Sathrum, A. J. & Smieja, J. M. Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels. Chem. Soc. Rev. 38, 89–99 (2009).

  60. 60.

    Hansen, H. A., Varley, J. B., Peterson, A. A. & Nørskov, J. K. Understanding trends in the electrocatalytic activity of metals and enzymes for CO2 reduction to CO. J. Phys. Chem. Lett. 4, 388–392 (2013).

  61. 61.

    Ju, W. et al. Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO2. Nat. Commun. 8, 944 (2017).

  62. 62.

    Francke, R., Schille, B. & Roemelt, M. Homogeneously catalyzed electroreduction of carbon dioxide — methods, mechanisms, and catalysts. Chem. Rev. (2018).

  63. 63.

    Bhugun, I., Lexa, D. & Savéant, J.-M. Catalysis of the electrochemical reduction of carbon dioxide by iron(0) porphyrinÿs: synergystic effect of weak Bronsted acids. J. Am. Chem. Soc. 118, 1769–1776 (1996).

  64. 64.

    Costentin, C., Drouet, S., Robert, M. & Savéant, J. -M. A local proton source enhances CO2 electroreduction to CO by a molecular Fe catalyst. Science 338, 90–94 (2012).

  65. 65.

    Costentin, C., Passard, G., Robert, M. & Savéant, J. -M. Ultraefficient homogeneous catalyst for the CO2-to-CO electrochemical conversion. Proc. Natl Acad. Sci. USA 111, 14990–14994 (2014).

  66. 66.

    Azcarate, I., Costentin, C., Robert, M. & Sav‚ant, J. -M. Through-space charge interaction substituent effects in molecular catalysis leading to the design of the most efficient catalyst of CO2-to-CO electrochemical conversion. J. Am. Chem. Soc. 138, 16639–16644 (2016). Positively charged iron porphyrin represents the most efficient electrocatalysts for homogeneous CO 2 -to-CO conversion benefiting from through space charge interaction substituent effects.

  67. 67.

    Costentin, C., Drouet, S., Passard, G., Robert, M. & Savéant, J. -M. Proton-coupled electron transfer cleavage of heavy-atom bonds in electrocatalytic processes. Cleavage of a C–O bond in the catalyzed electrochemical reduction of CO2. J. Am. Chem. Soc. 135, 9023–9031 (2013).

  68. 68.

    Beley, M., Collin, J. P., Ruppert, R. & Sauvage, J. P. Electrocatalytic reduction of carbon dioxide by nickel cyclam2+ in water: study of the factors affecting the efficiency and the selectivity of the process. J. Am. Chem. Soc. 108, 7461–7467 (1986).

  69. 69.

    Costentin, C., Robert, M., Savéant, J. -M. & Tatin, A. Efficient and selective molecular catalyst for the CO2-to-CO electrochemical conversion in water. Proc. Natl Acad. Sci. USA 112, 6882–6886 (2015).

  70. 70.

    Hawecker, J., Lehn, J. -M. & Ziessel, R. Electrocatalytic reduction of carbon dioxide mediated by Re(bipy)(CO)3Cl (bipy = 2,2'-bipyridine). J. Chem. Soc. Chem. Commun. 328–330 (1984).

  71. 71.

    Bourrez, M., Molton, F., Chardon-Noblat, S. & Deronzier, A. Mn(bipyridyl)(CO)3Br: an abundant metal carbonyl complex as efficient electrocatalyst for CO2 reduction. Angew. Chem. Int. Ed. 50, 9903–9906 (2011).

  72. 72.

    Chen, L. et al. Molecular catalysis of the electrochemical and photochemical reduction of CO2 with Earth-abundant metal complexes. Selective production of CO vs HCOOH by switching of the metal center. J. Am. Chem. Soc. 137, 10918–10921 (2015).

  73. 73.

    Chapovetsky, A., Do, T. H., Haiges, R., Takase, M. K. & Marinescu, S. C. Proton-assisted reduction of CO2 by cobalt aminopyridine macrocycles. J. Am. Chem. Soc. 138, 5765–5768 (2016).

  74. 74.

    Rosas-Hernandez, A., Junge, H., Beller, M., Roemelt, M. & Francke, R. Cyclopentadienone iron complexes as efficient and selective catalysts for the electroreduction of CO2 to CO. Catal. Sci. Technol. 7, 459–465 (2017).

  75. 75.

    Zhang, L., Zhao, Z. J. & Gong, J. L. Nanostructured materials for heterogeneous electrocatalytic CO2 reduction and their related reaction mechanisms. Angew. Chem. Int. Ed. 56, 11326–11353 (2017).

  76. 76.

    Larrazábal, G. O., Martín, A. J. & Pérez-Ramírez, J. Building blocks for high performance in electrocatalytic CO2 reduction: materials, optimization strategies, and device engineering. J. Phys. Chem. Lett. 8, 3933–3944 (2017).

  77. 77.

    Lin, S. et al. Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water. Science 349, 1208–1213 (2015). The first report incorporating metal complexes into porous frameworks to achieve high activity for CO 2 -to-CO conversion in water.

  78. 78.

    Kornienko, N. et al. Metal–organic frameworks for electrocatalytic reduction of carbon dioxide. J. Am. Chem. Soc. 137, 14129–14135 (2015).

  79. 79.

    Maurin, A. & Robert, M. Noncovalent immobilization of a molecular iron-based electrocatalyst on carbon electrodes for selective, efficient CO2-to-CO conversion in water. J. Am. Chem. Soc. 138, 2492–2495 (2016).

  80. 80.

    Morlanés, N., Takanabe, K. & Rodionov, V. Simultaneous reduction of CO2 and splitting of H2O by a single immobilized cobalt phthalocyanine electrocatalyst. ACS Catal. 6, 3092–3095 (2016).

  81. 81.

    Zhang, X. et al. Highly selective and active CO2 reduction electro-catalysts based on cobalt phthalocyanine/carbon nanotube hybrid structures. Nat. Commun. 8, 14675 (2017).

  82. 82.

    Hu, X.-M., Rønne, M. H., Pedersen, S. U., Skrydstrup, T. & Daasbjerg, K. Enhanced catalytic activity of cobalt porphyrin in CO2 electroreduction upon immobilization on carbon materials. Angew. Chem. Int. Ed. 56, 6468–6472 (2017).

  83. 83.

    Zhu, W. et al. Monodisperse Au nanoparticles for selective electrocatalytic reduction of CO2 to CO. J. Am. Chem. Soc. 135, 16833–16836 (2013).

  84. 84.

    Zhu, W. et al. Active and selective conversion of CO2 to CO on ultrathin Au nanowires. J. Am. Chem. Soc. 136, 16132–16135 (2014).

  85. 85.

    Liu, M. et al. Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration. Nature 537, 382–386 (2016). This paper demonstrates the enhanced electrocatalytic CO 2 reduction due to the electric field induced high local concentration of electrolyte cations and CO 2 close to the active sites.

  86. 86.

    Lu, Q. et al. A selective and efficient electrocatalyst for carbon dioxide reduction. Nat. Commun. 5, 3242 (2014).

  87. 87.

    Gao, D. et al. Size-dependent electrocatalytic reduction of CO2 over Pd nanoparticles. J. Am. Chem. Soc. 137, 4288–4291 (2015).

  88. 88.

    Quan, F. J., Zhong, D., Song, H. C., Jia, F. L. & Zhang, L. Z. A highly efficient zinc catalyst for selective electroreduction of carbon dioxide in aqueous NaCl solution. J. Mater. Chem. A 3, 16409–16413 (2015).

  89. 89.

    DiMeglio, J. L. & Rosenthal, J. Selective conversion of CO2 to CO with high efficiency using an inexpensive bismuth-based electrocatalyst. J. Am. Chem. Soc. 135, 8798–8801 (2013).

  90. 90.

    Asadi, M. et al. Robust carbon dioxide reduction on molybdenum disulphide edges. Nat. Commun. 5, 4470 (2014).

  91. 91.

    Asadi, M. et al. Nanostructured transition metal dichalcogenide electrocatalysts for CO2 reduction in ionic liquid. Science 353, 467–470 (2016). Nanostructured transition metal dichalcogenides represent the most efficient electrocatalysts for heterogeneous CO 2 -to-CO conversion in aqueous media.

  92. 92.

    Xu, J. et al. Revealing the origin of activity in nitrogen-doped nanocarbons towards electrocatalytic reduction of carbon dioxide. ChemSusChem 9, 1085–1089 (2016).

  93. 93.

    Huan, T. N. et al. Electrochemical reduction of CO2 catalyzed by Fe-N-C materials: a structure–selectivity study. ACS Catal. 7, 1520–1525 (2017).

  94. 94.

    Li, X. et al. Exclusive Ni–N4 sites realize near-unity CO selectivity for electrochemical CO2 reduction. J. Am. Chem. Soc. 139, 14889–14892 (2017). Single nickel atoms embedded in a carbon matrix exhibits near-unity selectivity for electrochemical CO 2 -to-CO conversion in water.

  95. 95.

    Jensen, M. T. et al. Scalable carbon dioxide electroreduction coupled to carbonylation chemistry. Nat. Commun. 8, 489 (2017). The first example of applying electrochemistry for a scalable reduction of CO 2 to CO coupled to ensuing carbonylative transformations.

  96. 96.

    Nielsen, D. U. et al. Palladium-catalyzed double carbonylation using near stoichiometric carbon monoxide: Expedient access to substituted 13C2-labeled phenethylamines. J. Org. Chem. 77, 6155–6165 (2012).

  97. 97.

    Gøgsig, T. M., Nielsen, D. U., Lindhardt, A. T. & Skrydstrup, T. Palladium catalyzed carbonylative Heck reaction affording monoprotected 1,3-ketoaldehydes. Org. Lett. 14, 2536–2539 (2012).

  98. 98.

    Prat, D., Hayler, J. & Wells, A. A survey of solvent selection guides. Green Chem. 16, 4546–4551 (2014).

  99. 99.

    Tahir, M. et al. Electrocatalytic oxygen evolution reaction for energy conversion and storage: a comprehensive review. Nano Energy 37, 136–157 (2017).

  100. 100.

    Tatin, A. et al. Efficient electrolyzer for CO2 splitting in neutral water using earth-abundant materials. Proc. Natl Acad. Sci. USA 113, 5526–5529 (2016).

  101. 101.

    Ren, L., Li, X. & Jiao, N. Dioxygen-promoted Pd-catalyzed aminocarbonylation of organoboronic acids with amines and CO: a direct approach to tertiary amides. Org. Lett. 18, 5852–5855 (2016).

  102. 102.

    Sheng, W. et al. Electrochemical reduction of CO2 to synthesis gas with controlled CO/H2 ratios. Energy Environ. Sci. 10, 1180–1185 (2017).

  103. 103.

    Pumera, M. & Loo, A. H. Layered transition-metal dichalcogenides (MoS2 and WS2) for sensing and biosensing. Trac-Trends Anal. Chem. 61, 49–53 (2014).

Download references


We thank the Danish National Research Foundation (grant no. DNRF118) and Aarhus University for financial support.

Author information

All authors participated in designing and writing the manuscript.

Correspondence to Kim Daasbjerg or Troels Skrydstrup.

Ethics declarations

Competing interests

T.S. is co-owner of SyTracks a/s, which commercializes the two-chamber system, COware.

Additional information

Reprints and permissions information are available at

Correspondence and requests for materials should be addressed to K.D. or T.S.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Table 1

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Further reading

Fig. 1: Transformation of CO2 to value-added chemicals.
Fig. 2: Application of CO produced from the RWGSR into a variety of chemical transformations.
Fig. 3: Boron and silicon based reductants for CO2 conversion.
Fig. 4: Electrocatalysts exhibiting a FEmax ≥ 90% for CO2-to-CO conversion.
Fig. 5: Electrochemical CO2-to-CO conversion coupled with CO utilization for carbonylation reactions.
Fig. 6: Future challenges.