Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Efficient hydrogen peroxide generation using reduced graphene oxide-based oxygen reduction electrocatalysts


Electrochemical oxygen reduction has garnered attention as an emerging alternative to the traditional anthraquinone oxidation process to enable the distributed production of hydrogen peroxide. Here, we demonstrate a selective and efficient non-precious electrocatalyst, prepared through an easily scalable mild thermal reduction of graphene oxide, to form hydrogen peroxide from oxygen. During oxygen reduction, certain variants of the mildly reduced graphene oxide electrocatalyst exhibit highly selective and stable peroxide formation activity at low overpotentials (<10 mV) under basic conditions, exceeding the performance of current state-of-the-art alkaline catalysts. Spectroscopic structural characterization and in situ Raman spectroelectrochemistry provide strong evidence that sp2-hybridized carbon near-ring ether defects along sheet edges are the most active sites for peroxide production, providing new insight into the electrocatalytic design of carbon-based materials for effective peroxide production.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: F-mrGO electrocatalytic properties for the ORR.
Fig. 2: Raman spectroelectrochemistry during ORR measurements at F-mrGO and F-mrGO(600) electrodes.
Fig. 3: Structural characterization and electrocatalytic activity of thermally annealed F-mrGO electrodes.
Fig. 4: Mass activity of different electrocatalysts for H2O2 production.


  1. 1.

    Campos-Martin, J. M., Blanco-Brieva, G. & Fierro, J. L. G. Hydrogen peroxide synthesis: an outlook beyond the anthraquinone process. Angew. Chem. Int. Ed. 45, 6962–6984 (2006).

    CAS  Article  Google Scholar 

  2. 2.

    Seh, Z. W. et al. Combining theory and experiment in electrocatalysis: insights into materials design. Science 355, eaad4998 (2017).

    Article  Google Scholar 

  3. 3.

    Siahrostami, S. et al. Enabling direct H2O2 production through rational electrocatalyst design. Nat. Mater. 12, 1137–1143 (2013).

    CAS  Article  Google Scholar 

  4. 4.

    Verdaguer-Casadevall, A. et al. Trends in the electrochemical synthesis of H2O2: enhancing activity and selectivity by electrocatalytic site engineering. Nano Lett. 14, 1603–1608 (2014).

    CAS  Article  Google Scholar 

  5. 5.

    Viswanathan, V., Hansen, H. A., Rossmeisl, J. & Norskov, J. K. Unifying the 2e and 4e reduction of oxygen on metal surfaces. J. Phys. Chem. Lett. 3, 2948–2951 (2012).

    CAS  Article  Google Scholar 

  6. 6.

    Chen, Z. et al. Development of a reactor with carbon catalysts for modular-scale, low-cost electrochemical generation of H2O2. React. Chem. Eng. 2, 239–245 (2017).

    CAS  Article  Google Scholar 

  7. 7.

    Wagman, D. D. et al. The NBS tables of chemical thermodynamic properties. J. Phys. Chem. Ref. Data 11, 2-37–2-355 (1982).

    Google Scholar 

  8. 8.

    Mukerjee, S. & Srinivasan, S. Enhanced electrocatalysis of oxygen reduction on platinum alloys in proton exchange membrane fuel cells. J. Electroanal. Chem. 357, 201–224 (1993).

    CAS  Article  Google Scholar 

  9. 9.

    Gasteiger, H. A., Kocha, S. S., Sompalli, B. & Wagner, F. T. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl. Catal. B 56, 9–35 (2005).

    CAS  Article  Google Scholar 

  10. 10.

    Park, J., Nabae, Y., Hayakawa, T. & Kakimoto, M. A. Highly selective two-electron oxygen reduction catalyzed by mesoporous nitrogen-doped carbon. ACS Catal. 4, 3749–3754 (2014).

    CAS  Article  Google Scholar 

  11. 11.

    Jirkovsky, J. S. et al. Single atom hot-spots at Au–Pd nanoalloys for electrocatalytic H2O2 production. J. Am. Chem. Soc. 133, 19432–19441 (2011).

    CAS  Article  Google Scholar 

  12. 12.

    Yang, S., Kim, J., Tak, Y. J., Soon, A. & Lee, H. Single-atom catalyst of platinum supported on titanium nitride for selective electrochemical reactions. Angew. Chem. Int. Ed. 55, 2058–2062 (2016).

    CAS  Article  Google Scholar 

  13. 13.

    Zheng, Z., Ng, Y. H., Wang, D.-W. & Amal, R. Epitaxial growth of Au–Pt–Ni nanorods for direct high selectivity H2O2 production. Adv. Mater. 28, 9949–9955 (2016).

    CAS  Article  Google Scholar 

  14. 14.

    Lee, Y.-H., Li, F., Chang, K.-H., Hu, C.-C. & Ohsak, T. Novel synthesis of N-doped porous carbons from collagen for electrocatalytic production of H2O2. Appl. Catal. B Environ. 126, 208–214 (2012).

    CAS  Article  Google Scholar 

  15. 15.

    Paliteiro, C., Hamnett, A. & Goodenough, J. B. The electroreduction of oxygen on prolytic graphite. J. Electroanal. Chem. 233, 147–159 (1987).

    CAS  Article  Google Scholar 

  16. 16.

    Tammeveski, K., Kontturi, K., Nichols, R. J., Potter, R. J. & Schiffrin, D. J. Surface redox catalysis for O2 reduction on quinone-modified glassy carbon electrodes. J. Electroanal. Chem. 515, 101–112 (2001).

    CAS  Article  Google Scholar 

  17. 17.

    Alvarez-Gallegos, A. & Pletcher, D. The removal of low level organics via hydrogen peroxide formed in a reticulated vitreous carbon cathode cell, Part 1. The electrosynthesis of hydrogen peroxide in aqueous acidic solutions. Electrochim. Acta 44, 853–861 (1998).

    CAS  Article  Google Scholar 

  18. 18.

    Sarapuu, A., Vaik, K., Schiffrin, D. J. & Tammeveski, K. Electrochemical reduction of oxygen on anthraquinone-modified glassy carbon electrodes in alkaline solution. J. Electroanal. Chem. 541, 23–29 (2003).

    CAS  Article  Google Scholar 

  19. 19.

    Yang, H. H. & McCreery, R. L. Elucidation of the mechanism of dioxygen reduction on metal-free carbon electrodes. J. Electrochem. Soc. 147, 3420–3428 (2000).

    CAS  Article  Google Scholar 

  20. 20.

    Xu, J., Huang, W. H. & McCreery, R. L. Isotope and surface preparation effects on alkaline dioxygen reduction at carbon electrodes. J. Electroanal. Chem. 410, 235–242 (1996).

    Article  Google Scholar 

  21. 21.

    Hasche, F., Oezaslan, M., Strasser, P. & Fellinger, T.-P. Electrocatalytic hydrogen peroxide formation on mesoporous non-metal nitrogen-doped carbon catalyst. J. Energy Chem. 25, 251–257 (2016).

    Article  Google Scholar 

  22. 22.

    Tao, L. et al. Edge-rich and dopant-free graphene as a highly efficient metal-free electrocatalyst for the oxygen reduction reaction. Chem. Commun. 52, 2764–2767 (2016).

    CAS  Article  Google Scholar 

  23. 23.

    Yan, D. et al. Defect chemistry of nonprecious-metal electrocatalysts for oxygen reactions. Adv. Mater. 29, 1606459 (2017).

    Article  Google Scholar 

  24. 24.

    Cote, L. J., Kim, F. & Huang, J. Langmuir–Blodgett assembly of graphite oxide single layers. J. Am. Chem. Soc. 131, 1043–1049 (2009).

    CAS  Article  Google Scholar 

  25. 25.

    Eda, G., Fanchini, G. & Chhowalla, M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 3, 270–274 (2008).

    CAS  Article  Google Scholar 

  26. 26.

    Levich, B. The theory of concentration polarisation. Discuss. Faraday Soc. 1, 37–49 (1947).

    Article  Google Scholar 

  27. 27.

    Zhou, R. F., Zheng, Y., Jaroniec, M. & Qiao, S. Z. Determination of the electron transfer number for the oxygen reduction reaction: from theory to experiment. ACS Catal. 6, 4720–4728 (2016).

    CAS  Article  Google Scholar 

  28. 28.

    Bonakdarpour, A. et al. Impact of loading in RRDE experiments on Fe–N–C catalysts: two- or four-electron oxygen reduction? Electron. Solid State Lett. 11, B105–B108 (2008).

    CAS  Article  Google Scholar 

  29. 29.

    Lerf, A., He, H., Forster, M. & Klinowski, J. Structure of graphite oxide revisited. J. Phys. Chem. B 102, 4477–4482 (1998).

    CAS  Article  Google Scholar 

  30. 30.

    Acik, M. et al. Unusual infrared-absorption mechanism in thermally reduced graphene oxide. Nat. Mater. 9, 840–845 (2010).

    CAS  Article  Google Scholar 

  31. 31.

    Acik, M. et al. The role of oxygen during thermal reduction of graphene oxide studied by infrared absorption spectroscopy. J. Phys. Chem. C 115, 19761–19781 (2011).

    CAS  Article  Google Scholar 

  32. 32.

    Vijayarangamuthu, K. et al. Temporospatial control of graphene wettability. Adv. Mater. 28, 661–667 (2016).

    CAS  Article  Google Scholar 

  33. 33.

    Bowling, R. J., Packard, R. T. & Mccreery, R. L. Activation of highly ordered pyrolytic-graphite for heterogeneous electron-transfer: relationship between electrochemical performance and carbon microstructure. J. Am. Chem. Soc. 111, 1217–1223 (1989).

    CAS  Article  Google Scholar 

  34. 34.

    Wang, Y., Alsmeyer, D. C. & Mccreery, R. L. Raman-spectroscopy of carbon materials: structural basis of observed spectra. Chem. Mater. 2, 557–563 (1990).

    CAS  Article  Google Scholar 

  35. 35.

    Shen, A. L. et al. Oxygen reduction reaction in a droplet on graphite: direct evidence that the edge is more active than the basal plane. Angew. Chem. Int. Ed. 53, 10804–10808 (2014).

    CAS  Article  Google Scholar 

  36. 36.

    Schultz, B. J., Dennis, Lee, V. & Banerjee, S. An electron structure perspective of graphene interfaces. RSC Adv. 4, 634–644 (2014).

    CAS  Article  Google Scholar 

  37. 37.

    Lee, V. et al. In situ near-edge X-ray absorption fine structure spectroscopy investigation of the thermal defunctionalization of graphene oxide. J. Vac. Sci. Technol. B 30, 061206 (2012).

    Article  Google Scholar 

  38. 38.

    Kaniyoor, A. & Ramaprabhu, S. The Raman spectroscopic investigation of graphene oxide derived graphene. AIP Adv. 2, 032183 (2012).

    Article  Google Scholar 

  39. 39.

    Diez-Betriu, X. et al. Raman spectroscopy for the study of reduction mechanisms and optimization of conductivity in graphene oxide thin films. J. Mater. Chem. C 1, 6905–6912 (2013).

    CAS  Article  Google Scholar 

  40. 40.

    Ferrari, A. C. Raman spectroscopy of graphene and graphite: disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Commun. 143, 47–57 (2007).

    CAS  Article  Google Scholar 

  41. 41.

    Akhavan, O. The effect of heat treatment on formation of graphene thin films from graphene oxide nanosheets. Carbon 48, 509–519 (2010).

    CAS  Article  Google Scholar 

  42. 42.

    Gao, Y. et al. Combustion synthesis of graphene oxide-TiO2 hybrid materials for photodegradation of methyl orange. Carbon 50, 4093–4101 (2012).

    CAS  Article  Google Scholar 

  43. 43.

    Lin, Y.-C., Lin, C.-Y. & Chiu, P.-W. Controllable graphene N-doping with ammonia plasma. Appl. Phys. Lett. 96, 133110 (2010).

    Article  Google Scholar 

  44. 44.

    Newman, J. & Thomas-Alyea, K. E. Electrochemical Systems. (John Wiley & Sons, Hoboken, 2004).

    Google Scholar 

  45. 45.

    McCloskey, B. D. et al. Combining accurate O2 and Li2O2 assays to separate discharge and charge stability limitations in nonaqueous Li–O2 batteries. J. Phys. Chem. Lett. 4, 2989–2993 (2013).

    CAS  Article  Google Scholar 

Download references


B.D.M. and H.W.K. gratefully acknowledge support from the National Science Foundation under grant number CBET-1604927. H.W.K. also acknowledges support from the Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education (2016R1A6A3A03012382). N.K. gratefully acknowledges the Royal Society Newton International Fellowship. P.Y. acknowledges support from the Director of the Office of Science, Office of Basic Energy Sciences as part of the Chemical Sciences, Geosciences, and Biosciences Division of the US Department of Energy, under contract number DE-AC02-05CH11231 within the Catalysis Research Program (FWP number CH030201). The work at Molecular Foundry (XPS and scanning electron microscope) and Advanced Light Source (NEXAFS) was supported by the Office of Science, Office of Basic Energy Sciences of the US Department of Energy under contract number DE-AC02-05CH11231. H.W.K. gratefully acknowledges H. B. Park for guidance on graphene oxide synthesis, W. Kim for FTIR measurement and Y. Hwa for scanning electron microscope analysis. A. C. Luntz is also acknowledged for fruitful discussions on the potential mechanisms of ORR on mrGO materials.

Author information




H.W.K. contributed to the experimental planning, experimental measurements, data analysis and manuscript preparation. M.B.R. and N.K. performed the Raman spectroscopy, including in situ and ex situ measurements. L.Z. measured NEXAFS. J.G. and P.Y. provided experimental guidance for the NEXAFS and Raman measurements, respectively. B.D.M. contributed to the experimental planning, data analysis and manuscript preparation. All authors reviewed and commented on the manuscript before publication.

Corresponding author

Correspondence to Bryan D. McCloskey.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–34, Supplementary Table 1 and Supplementary References.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kim, H.W., Ross, M.B., Kornienko, N. et al. Efficient hydrogen peroxide generation using reduced graphene oxide-based oxygen reduction electrocatalysts. Nat Catal 1, 282–290 (2018).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing