Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Encapsulating highly catalytically active metal nanoclusters inside porous organic cages


The creation of metal nanoclusters with dimensions ranging from subnanometre to ~2 nm for heterogeneous catalysis has received substantial attention. However, synthesizing these structures while retaining surface activity and avoiding aggregation is challenging. Here, we report a reverse double-solvents approach that enables encapsulation of highly catalytically active Pd nanoclusters inside the newly formed discrete organic molecular cage, RCC3. By encapsulating within the open cavities of soluble RCC3 cages, the obtained Pd nanocluster cores are produced with precisely controlled size (~0.72 nm) and show high solubility, excellent dispersibility and accessibility in solution, presenting significantly enhanced catalytic activities towards various liquid-phase catalytic reactions. Moreover, owing to the effective confinement of cage cavities, the as-prepared Pd nanoclusters possess excellent stability and durability. The strategy of encapsulation of metal nanoclusters within soluble porous organic cages is promising for developing stable and active catalysts.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Synthesis and characterization of the RCC3-cage-encapsulated Pd nanoclusters.
Fig. 2: Morphological characterization of RCC3-cage-encapsulated Pd nanoclusters.
Fig. 3: Application of RCC3-cage-encapsulated Pd nanoclusters for catalytic reactions.


  1. 1.

    Dhakshinamoorthy, A. & Garcia, H. Catalysis by metal nanoparticles embedded on metal–organic frameworks. Chem. Soc. Rev. 41, 5262–5284 (2012).

    CAS  Article  Google Scholar 

  2. 2.

    Borchardt, L. et al. Preparation and application of cellular and nanoporous carbides. Chem. Soc. Rev. 41, 5053–5067 (2012).

    CAS  Article  Google Scholar 

  3. 3.

    Buchwalter, P., Rosé, J. & Braunstein, P. Multimetallic catalysis based on heterometallic complexes and clusters. Chem. Rev. 115, 28–126 (2015).

    CAS  Article  Google Scholar 

  4. 4.

    Li, B. et al. Emerging multifunctional metal–organic framework materials. Adv. Mater. 28, 8819–8860 (2016).

    CAS  Article  Google Scholar 

  5. 5.

    He, L., Weniger, F., Neumann, H. & Beller, M. Synthesis, characterization, and application of metal nanoparticles supported on nitrogen-doped carbon: catalysis beyond electrochemistry. Angew. Chem. Int. Ed. Engl. 55, 12582–12594 (2016).

    CAS  Article  Google Scholar 

  6. 6.

    Wu, C.-D. & Zhao, M. Incorporation of molecular catalysts in metal–organic frameworks for highly efficient heterogeneous catalysis. Adv. Mater. 29, 1605446 (2017).

    Article  Google Scholar 

  7. 7.

    Ding, S.-Y. et al. Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in Suzuki–Miyaura coupling reaction. J. Am. Chem. Soc. 133, 19816–19822 (2011).

    CAS  Article  Google Scholar 

  8. 8.

    Kalidindi, S. B. et al. Metal@COFs: covalent organic frameworks as templates for Pd nanoparticles and hydrogen storage properties of Pd@COF-102 hybrid material. Chem. Eur. J. 18, 10848–10856 (2012).

    CAS  Article  Google Scholar 

  9. 9.

    Doherty, C. M. et al. Using functional nano- and microparticles for the preparation of metal–organic framework composites with novel properties. Acc. Chem. Res. 47, 396–405 (2014).

    CAS  Article  Google Scholar 

  10. 10.

    Sun, L.-B., Liu, X.-Q. & Zhou, H.-C. Design and fabrication of mesoporous heterogeneous basic catalysts. Chem. Soc. Rev. 44, 5092–5147 (2015).

    CAS  Article  Google Scholar 

  11. 11.

    Yang, X., Pachfule, P., Chen, Y., Tsumori, N. & Xu, Q. Highly efficient hydrogen generation from formic acid using a reduced graphene oxide-supported AuPd nanoparticle catalyst. Chem. Commun. 52, 4171–4174 (2016).

    CAS  Article  Google Scholar 

  12. 12.

    Meng, C. et al. Atomically and electronically coped Pt and Co hybrid nanocatalysts for enhanced electrocatalytic performance. Adv. Mater. 29, 1604607 (2017).

    Article  Google Scholar 

  13. 13.

    Tabassum, H. et al. Metal–organic frameworks derived cobalt phosphide architecture encapsulated into B/N co-doped graphene nanotubes for all pH value electrochemical hydrogen evolution. Adv. Energy Mater. 7, 1601671 (2017).

    Article  Google Scholar 

  14. 14.

    Snelders, D. J. M., Yan, N., Gan, W., Laurenczy, G. & Dyson, P. J. Tuning the chemoselectivity of Rh nanoparticle catalysts by site-selective poisoning with phosphine ligands: the hydrogenation of functionalized aromatic compounds. ACS Catal. 2, 201–207 (2012).

    CAS  Article  Google Scholar 

  15. 15.

    Lu, G. et al. Imparting functionality to a metal–organic framework material by controlled nanoparticle encapsulation. Nat. Chem. 4, 310–316 (2012).

    CAS  Article  Google Scholar 

  16. 16.

    Niu, Z. & Li, Y. Removal and utilization of capping agents in nanocatalysis. Chem. Mater. 26, 72–83 (2014).

    CAS  Article  Google Scholar 

  17. 17.

    Huang, N., Xu, Y. & Jiang, D. High-performance heterogeneous catalysis with surface-exposed stable metal nanoparticles. Sci. Rep. 4, 7728 (2014).

    Google Scholar 

  18. 18.

    Tozawa, T. et al. Porous organic cages. Nat. Mater. 8, 973–978 (2009).

    CAS  Article  Google Scholar 

  19. 19.

    Hasell, T., Schmidtmann, M. & Cooper, A. I. Molecular doping of porous organic cages. J. Am. Chem. Soc. 133, 14920–14923 (2011).

    CAS  Article  Google Scholar 

  20. 20.

    Avellaneda, A. et al. Kinetically controlled porosity in a robust organic cage material. Angew. Chem. Int. Ed. Engl. 52, 3746–3749 (2013).

    CAS  Article  Google Scholar 

  21. 21.

    Zhang, G., Presly, O., White, F., Oppel, I. M. & Mastalerz, M. A permanent mesoporous organic cage with an exceptionally high surface area. Angew. Chem. Int. Ed. Engl. 53, 1516–1520 (2014).

    CAS  Article  Google Scholar 

  22. 22.

    Slater, A. G. & Cooper, A. I. Function-led design of new porous materials. Science 348, aaa8075 (2015).

    Article  Google Scholar 

  23. 23.

    Hasell, T. & Cooper, A. I. Porous organic cages: soluble, modular and molecular pores. Nat. Rev. Mater. 1, 16053 (2016).

    CAS  Article  Google Scholar 

  24. 24.

    Sun, J.-K., Zhan, W.-W., Akita, T. & Xu, Q. Toward homogenization of heterogeneous metal nanoparticle catalysts with enhanced catalytic performance: soluble porous organic cage as a stabilizer and homogenizer. J. Am. Chem. Soc. 137, 7063–7066 (2015).

    CAS  Article  Google Scholar 

  25. 25.

    Holst, J. R., Trewin, A. & Cooper, A. I. Porous organic molecules. Nat. Chem. 2, 915–920 (2010).

    CAS  Article  Google Scholar 

  26. 26.

    Jelfs, K. E. et al. Large self-assembled chiral organic cages: synthesis, structure, and shape persistence. Angew. Chem. Int. Ed. Engl. 50, 10653–10656 (2011).

    CAS  Article  Google Scholar 

  27. 27.

    Hasell, T., Chong, S. Y., Jelfs, K. E., Adams, D. J. & Cooper, A. I. Porous organic cage nanocrystals by solution mixing. J. Am. Chem. Soc. 134, 588–598 (2012).

    CAS  Article  Google Scholar 

  28. 28.

    Little, M. A., Chong, S. Y., Schmidtmann, M., Hasell, T. & Cooper, A. I. Guest control of structure in porous organic cages. Chem. Commun. 50, 9465–9468 (2014).

    CAS  Article  Google Scholar 

  29. 29.

    Aijaz, A. et al. Immobilizing highly catalytically active Pt nanoparticles inside the pores of metal–organic framework: a double solvents approach. J. Am. Chem. Soc. 134, 13926–13929 (2012).

    CAS  Article  Google Scholar 

  30. 30.

    Zhu, Q.-L., Li, J. & Xu, Q. Immobilizing metal nanoparticles to metal–organic frameworks with size and location control for optimizing catalytic performance. J. Am. Chem. Soc. 135, 10210–10213 (2013).

    CAS  Article  Google Scholar 

  31. 31.

    Chen, Y.-Z. et al. Multifunctional PdAg@MIL-101 for one-pot cascade reactions: combination of host–guest cooperation and bimetallic synergy in catalysis. ACS Catal. 5, 2062–2069 (2015).

    CAS  Article  Google Scholar 

  32. 32.

    Hasell, T., Zhang, H. & Cooper, A. I. Solution-processable molecular cage micropores for hierarchically porous materials. Adv. Mater. 24, 5732–5737 (2012).

    CAS  Article  Google Scholar 

  33. 33.

    Liu, M. et al. Acid- and base-stable porous organic cages: shape persistence and pH stability via post-synthetic “tying” of a flexible amine cage. J. Am. Chem. Soc. 136, 7583–7586 (2014).

    CAS  Article  Google Scholar 

  34. 34.

    Li, Z. et al. Tandem nitrogen functionalization of porous carbon: toward immobilizing highly active palladium nanoclusters for dehydrogenation of formic acid. ACS Catal. 7, 2720–2724 (2017).

    CAS  Article  Google Scholar 

  35. 35.

    Victoria Gomez, M., Guerra, J., Velders, A. H. & Crooks, R. M. NMR characterization of fourth-generation PAMAM dendrimers in the presence and absence of palladium dendrimer-encapsulated nanoparticles. J. Am. Chem. Soc. 131, 341–350 (2009).

    Article  Google Scholar 

  36. 36.

    Sue Myers, V. et al. Dendrimer-encapsulated nanoparticles: new synthetic and characterization methods and catalytic applications. Chem. Sci. 2, 1632–1646 (2011).

    Article  Google Scholar 

  37. 37.

    Gutowska, A. et al. Nanoscaffold mediates hydrogen release and the reactivity of ammonia borane. Angew. Chem. Int. Ed. Engl. 44, 3578–3582 (2005).

    CAS  Article  Google Scholar 

  38. 38.

    Keaton, R. J., Blacquiere, J. M. & Baker, R. T. Base metal catalyzed dehydrogenation of ammonia-borane for chemical hydrogen storage. J. Am. Chem. Soc. 129, 1844–1845 (2007).

    CAS  Article  Google Scholar 

  39. 39.

    Kim, S. K. et al. Palladium catalysts for dehydrogenation of ammonia borane with preferential B–H activation. J. Am. Chem. Soc. 132, 9954–9955 (2010).

    CAS  Article  Google Scholar 

  40. 40.

    Demirci, U. B. & Miele, P. Chemical hydrogen storage: ‘material’ gravimetric capacity versus ‘system’ gravimetric capacity. Energy Environ. Sci. 4, 3334–3341 (2011).

    CAS  Article  Google Scholar 

  41. 41.

    Huang, Z. & Autrey, T. Boron–hydrogen (BNH) compounds: recent developments in hydrogen storage, applications in hydrogenation and catalysis, and new syntheses. Energy Environ. Sci. 5, 9257–9268 (2012).

    CAS  Article  Google Scholar 

  42. 42.

    Peng, C.-Y. et al. Nanostructured Ni2P as a robust catalyst for the hydrolytic dehydrogenation of ammonia-borane. Angew. Chem. Int. Ed. Engl. 54, 15725–15729 (2015).

    CAS  Article  Google Scholar 

  43. 43.

    Kalviri, H. A., Gärtner, F., Ye, G., Korobkov, I. & Baker, R. T. Probing the second dehydrogenation step in ammonia-borane dehydrocoupling: characterization and reactivity of the key intermediate, B-(cyclotriborazanyl)amine-borane. Chem. Sci. 6, 618–624 (2015).

    CAS  Article  Google Scholar 

  44. 44.

    Li, Z. et al. Covalent triazine framework supported non-noble metal nanoparticles with superior activity for catalytic hydrolysis of ammonia borane: from mechanistic study to catalyst design. Chem. Sci. 8, 781–788 (2017).

    CAS  Article  Google Scholar 

  45. 45.

    Ramachandran, P. V. & Gagare, P. D. Preparation of ammonia borane in high yield and purity, methanolysis, and regeneration. Inorg. Chem. 46, 7810–7817 (2007).

    CAS  Article  Google Scholar 

  46. 46.

    Kalidindi, S. D., Vernekar, A. S. & Jadirgar, B. R. Co–Co2B, Ni–Ni3B and Co–Ni–B nanocomposites catalyzed ammonia-borane methanolysis for hydrogen generation. Phys. Chem. Chem. Phys. 11, 770–775 (2009).

    CAS  Article  Google Scholar 

  47. 47.

    Yadav, M. & Xu, Q. Liquid-phase chemical hydrogen storage materials. Energy Environ. Sci. 5, 9698–9725 (2012).

    CAS  Article  Google Scholar 

  48. 48.

    Yao, Q. et al. Methanolysis of ammonia borane by shape-controlled mesoporous copper nanostructures for hydrogen generation. Dalton Trans. 44, 1070–1076 (2015).

    CAS  Article  Google Scholar 

  49. 49.

    Zhan, W.-W., Zhu, Q.-L. & Xu, Q. Dehydrogenation of ammonia borane by metal nanoparticle catalysts. ACS Catal. 6, 6892–6905 (2016).

    CAS  Article  Google Scholar 

  50. 50.

    Jiang, H.-L., Akita, T., Ishida, T., Haruta, M. & Xu, Q. Synergistic catalysis of Au@Ag core-shell nanoparticles stabilized on metal–organic framework. J. Am. Chem. Soc. 133, 1304–1306 (2011).

    CAS  Article  Google Scholar 

  51. 51.

    Zhang, W. et al. A family of metal–organic frameworks exhibiting size-selective catalysis with encapsulated noble-metal nanoparticles. Adv. Mater. 26, 4056–4060 (2014).

    CAS  Article  Google Scholar 

  52. 52.

    Huang, G., Yang, Q., Xu, Q., Yu, S.-H. & Jiang, H.-L. Polydimethylsiloxane coating for a palladium/MOF composite: highly improved catalytic performance by surface hydrophobization. Angew. Chem. Int. Ed. Engl. 55, 7379–7383 (2016).

    CAS  Article  Google Scholar 

  53. 53.

    Zhao, P., Feng, X., Huang, D., Yang, G. & Astruc, D. Basic concepts and recent advances in nitrophenol reduction by gold- and other transition metal nanoparticles. Coord. Chem. Rev. 287, 114–136 (2015).

    CAS  Article  Google Scholar 

Download references


The authors thank the Ministry of Economy, Trade and Industry, National Institute of Advanced Industrial Science and Technology and Kobe University for financial support. X.Y. is grateful to China Scholarship Council and the Ministry of Education, Culture, Sports, Science and Technology, Japan for a PhD scholarship.

Author information




All authors contributed extensively to this work. X.Y. conducted the experiments and performed the characterizations. J.-K.S. helped to prepare the organic cages and analysed the experimental results. M.K. recorded the transmission electron microscopy data. H.P. helped to perform the characterizations. Q.X. designed the work. X.Y. and Q.X. wrote the manuscript with input from the other authors.

Corresponding author

Correspondence to Qiang Xu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Supplementary Figures 1–40, Supplementary Table 1 and Supplementary References

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Sun, JK., Kitta, M. et al. Encapsulating highly catalytically active metal nanoclusters inside porous organic cages. Nat Catal 1, 214–220 (2018).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing