Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Solvent-enabled control of reactivity for liquid-phase reactions of biomass-derived compounds

Abstract

The use of organic solvents in biomass conversion reactions can lead to high rates and improved selectivities. Here, we elucidate the effects of organic solvent mixtures with water on the kinetics of acid-catalysed dehydration reactions of relevance to biomass conversion. Based on results from reaction kinetics studies, combined with classical and ab initio molecular dynamics simulations, we show that the rates of acid-catalysed reactions in the liquid phase can be enhanced by altering the extents of solvation of the initial and transition states of these catalytic processes. The extent of these effects increases as the number of vicinal hydroxyl or oxygen-containing groups in the reactant increases, moving from an alcohol (butanol), to a diol (1,2-propanediol), to a carbohydrate (fructose). We demonstrate that the understanding of these solvation effects can be employed to optimize the rate and selectivity for production of the biomass platform molecule hydroxymethylfurfural from fructose.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Solvation effects on the kinetics of Brønsted acid-catalysed dehydration reactions.
Fig. 2: DFT simulation results of the Brønsted acid-catalysed dehydration of tert-butanol and 1,2-propanediol.
Fig. 3: Linear relationship between experimentally measured and DFT-calculated apparent activation free energies.
Fig. 4: Reaction kinetics of the consecutive acid-catalysed conversion of fructose to HMF to levulinic acid.

References

  1. Chheda, J. N., Huber, G. W. & Dumesic, J. A. Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals. Angew. Chem. Int. Ed. 46, 7164–7183 (2007).

    CAS  Article  Google Scholar 

  2. Corma, A., Iborra, S. & Velty, A. Chemical routes for the transformation of biomass into chemicals. Chem. Rev. 107, 2411–2502 (2007).

    CAS  Article  Google Scholar 

  3. Huber, G. W., Iborra, S. & Corma, A. Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem. Rev. 106, 4044–4098 (2006).

    CAS  Article  Google Scholar 

  4. Roman-Leshkov, Y., Chheda, J. N. & Dumesic, J. A. Phase modifiers promote efficient production of hydroxymethylfurfural from fructose. Science 312, 1933–1937 (2006).

    CAS  Article  Google Scholar 

  5. van Putten, R. J. et al. Hydroxymethylfurfural, a versatile platform chemical made from renewable resources. Chem. Rev. 113, 1499–1597 (2013).

    Article  Google Scholar 

  6. Zakrzewska, M. E., Bogel-Lukasik, E. & Bogel-Lukasik, R. Ionic liquid-mediated formation of 5-hydroxymethylfurfural—a promising biomass-derived building block. Chem. Rev. 111, 397–417 (2011).

    CAS  Article  Google Scholar 

  7. Zhao, H. B., Holladay, J. E., Brown, H. & Zhang, Z. C. Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural. Science 316, 1597–1600 (2007).

    CAS  Article  Google Scholar 

  8. Binder, J. B. & Raines, R. T. Simple chemical transformation of lignocellulosic biomass into furans for fuels and chemicals. J. Am. Chem. Soc. 131, 1979–1985 (2009).

    CAS  Article  Google Scholar 

  9. Huber, G. W., Chheda, J. N., Barrett, C. J. & Dumesic, J. A. Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates. Science 308, 1446–1450 (2005).

    CAS  Article  Google Scholar 

  10. Rosatella, A. A., Simeonov, S. P., Frade, R. F. M. & Afonso, C. A. M. 5-Hydroxymethylfurfural (HMF) as a building block platform: biological properties, synthesis and synthetic applications. Green. Chem. 13, 754–793 (2011).

    CAS  Article  Google Scholar 

  11. Swift, T. D. et al. Kinetics of homogeneous Brønsted acid catalyzed fructose dehydration and 5-hydroxymethyl furfural rehydration: a combined experimental and computational study. ACS Catal. 4, 259–267 (2014).

    CAS  Article  Google Scholar 

  12. Akien, G. R., Qi, L. & Horvath, I. T. Molecular mapping of the acid catalysed dehydration of fructose. Chem. Commun. 48, 5850–5852 (2012).

    CAS  Article  Google Scholar 

  13. Carey, F. A. & Sundberg, R. J. Advanced Organic Chemistry. Part A: Structure and Mechanisms 346–347 (Springer, New York, NY, 2007).

  14. Willi, A. V. in Comprehensive Chemical Kinetics Vol. 8 (eds Bamford, C. H. & Tipper, C. F.) Ch. 1, 21–24 (Elsevier, Amsterdam, 1997).

  15. Cox, B. G. Acids and Bases: Solvent Effects on Acid (Oxford Univ. Press, Oxford, 2013).

  16. Waghorne, W. E. Thermodynamics of solvation in mixed solvents. Chem. Soc. Rev. 22, 285–292 (1993).

    CAS  Article  Google Scholar 

  17. Reichardt, C. & Welton, T. Solvents and Solvent Effects in Organic Chemistry 4th edn 165–173 (Wiley-VCH, Weinheim, 2011).

    Google Scholar 

  18. Madon, R. J. & Iglesia, E. Catalytic reaction rates in thermodynamically non-ideal systems. J. Mol. Catal. A Chem. 163, 189–204 (2000).

    CAS  Article  Google Scholar 

  19. Chia, M. et al. Selective hydrogenolysis of polyols and cyclic ethers over bifunctional surface sites on rhodium-rhenium catalysts. J. Am. Chem. Soc. 133, 12675–12689 (2011).

    CAS  Article  Google Scholar 

  20. Lotze, S., Groot, C. C. M., Vennehaug, C. & Bakker, H. J. Femtosecond mid-infrared study of the dynamics of water molecules in water−acetone and water−dimethyl sulfoxide mixtures. J. Phys. Chem. B 119, 5228–5239 (2015).

    CAS  Article  Google Scholar 

  21. Wallace, V. M., Dhumal, N. R., Zehentbauer, F. M., Kim, H. J. & Kiefer, J. Revisiting the aqueous solutions of dimethyl sulfoxide by spectroscopy in the mid- and near-infrared: experiments and Car–Parrinello simulations. J. Phys. Chem. B 119, 14780–14789 (2015).

    CAS  Article  Google Scholar 

  22. Mizuno, K., Imafuji, S., Ochi, T., Ohta, T. & Maeda, S. Hydration of the CH groups in dimethyl sulfoxide probed by NMR and IR. J. Phys. Chem. B 104, 11001–11005 (2000).

    CAS  Article  Google Scholar 

  23. Kirchner, B. Theory of complicated liquids: investigation of liquids, solvents and solvent effects with modern theoretical methods. Phys. Rep. 440, 1–111 (2007).

    CAS  Article  Google Scholar 

  24. Kalidas, C., Hefter, G. & Marcus, Y. Gibbs energies of transfer of cations from water to mixed aqueous organic solvents. Chem. Rev. 100, 819–852 (2000).

    CAS  Article  Google Scholar 

  25. Ripin, D. H. & Evans, D. A. Evan’s pKa Table (Harvard University, 2005); http://evans.rc.fas.harvard.edu/pdf/evans_pKa_table.pdf

  26. Fujinaga, T. & Sakamoto, I. Electrochemical studies of sulfonates in non-aqueous solvents. J. Electroanal. Chem. Interfacial Electrochem. 85, 185–201 (1977).

    CAS  Article  Google Scholar 

  27. Das, K., Das, A. K. & Kundu, K. K. Ion–solvent interactions in acetonitrile + water mixtures. Electrochim. Acta 26, 471–478 (1981).

    CAS  Article  Google Scholar 

  28. Cox, B. G., Natarajan, R. & Waghorne, W. E. Thermodynamic properties for transfer of electrolytes from water to acetonitrile and to acetonitrile + water mixtures. J. Chem. Soc. Faraday Trans. 1 75, 86–95 (1979).

    CAS  Article  Google Scholar 

  29. Majindar, K., Lahiri, S. C. & Mukherjee, D. C. Thermodynamics of transfer of hydrogen ion from water to dioxane-water mixtures. J. Indian Chem. Soc. 70, 365–374 (1993).

    Google Scholar 

  30. Mellmer, M. A. et al. Solvent effects in acid-catalyzed biomass conversion reactions. Angew. Chem. Int. Ed. 53, 11872–11875 (2014).

    CAS  Article  Google Scholar 

  31. Zhang, J., Das, A., Assary, R. S., Curtiss, L. A. & Weitz, E. A combined experimental and computational study of the mechanism of fructose dehydration to 5-hydroxymethylfurfural in dimethylsulfoxide using Amberlyst 70, PO43-/niobic acid, or sulfuric acid catalysts. Appl. Catal. B 181, 874–887 (2016).

    CAS  Article  Google Scholar 

  32. Mushrif, S. H., Caratzoulas, S. D. & Vlachos, G. Understanding solvent effects in the selective conversion of fructose to 5-hydroxymethyl-furfural: a molecular dynamics investigation. Phys. Chem. Chem. Phys. 14, 2637–2644 (2012).

    CAS  Article  Google Scholar 

  33. Enslow, K. R. & Bell, A. T. The role of metal halides in enhancing the dehydration of xylose to furfural. ChemCatChem 7, 479–489 (2015).

    CAS  Article  Google Scholar 

  34. Marcotullio, G. & De Jong, W. Furfural formation from d-xylose: the use of different halides in dilute aqueous acidic solutions allows for exceptionally high yields. Carbohydr. Res. 346, 1291–1293 (2011).

    CAS  Article  Google Scholar 

  35. Marcotullio, G. & De Jong, W. Chloride ions enhance furfural formation from d-xylose in dilute aqueous acidic solutions. Green. Chem. 12, 1739–1746 (2010).

    CAS  Article  Google Scholar 

  36. Luterbacher, J. S. et al. Nonenzymatic sugar production from biomass using biomass-derived γ-valerolactone. Science 343, 277–280 (2014).

    CAS  Article  Google Scholar 

  37. Truhlar, D. G. Inverse solvent design. Nat. Chem. 5, 902–903 (2013).

    CAS  Article  Google Scholar 

  38. Struebing, H. et al. Computer-aided molecular design of solvents for accelerated reaction kinetics. Nat. Chem. 5, 952–957 (2013).

    CAS  Article  Google Scholar 

  39. Knifton, J. F., Sanderson, J. R. & Stockton, M. E. Tert-butanol dehydration to isobutylene via reactive distillation. Catal. Lett. 73, 55–57 (2001).

    CAS  Article  Google Scholar 

  40. Mori, K., Yamada, Y. & Sato, S. Catalytic dehydration of 1,2-propanediol into propanal. Appl. Catal. A 366, 304–308 (2009).

    CAS  Article  Google Scholar 

  41. Courtney, T. D., Nikolakis, V., Mpourmpakis, G., Chen, J. G. & Vlachos, D. G. Liquid-phase dehydration of propylene glycol using solid-acid catalysts. Appl. Catal. A 449, 59–68 (2012).

    CAS  Article  Google Scholar 

  42. Clever, H. L. & Pigott, S. P. Enthalpies of mixing of dimethylsulfoxide with water and with several ketones at 298.15 K. J. Chem. Thermodyn. 3, 221–225 (1971).

    CAS  Article  Google Scholar 

  43. Goates, J. R. & Sullivan, R. J. Thermodynamic properties of the system water–p-dioxane. J. Phys. Chem. 62, 188–190 (1958).

    CAS  Article  Google Scholar 

  44. Glew, D. N. & Watts, H. Aqueous nonelectrolyte solutions. Part XII. enthalpies of mixing of water and deuterium oxide with tetrahydrofuran. Can. J. Chem. 51, 1933–1940 (1973).

    CAS  Article  Google Scholar 

  45. Zaitseva, A., Pokki, J.-P., Le, H. Q., Alopaeus, V. & Sixta, H. Vapor–liquid equilibria, excess enthalpy, and density of aqueous γ-valerolactone solutions. J. Chem. Eng. Data 61, 881–890 (2016).

    CAS  Article  Google Scholar 

  46. Morcom, K. W. & Smith, R. W. Enthalpies of mixing of water + methyl cyanide. J. Chem. Thermodyn. 1, 503–505 (1969).

    CAS  Article  Google Scholar 

  47. Abraham, M. J. et al. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1, 19–25 (2015).

    Article  Google Scholar 

  48. Hutter, J., Iannuzzi, M., Schiffmann, F. & VandeVondele, J. Cp2k: atomistic simulations of condensed matter systems. WIREs Comput. Mol. Sci. 4, 15–25 (2014).

    CAS  Article  Google Scholar 

  49. Goga, N., Rzepiela, A. J., De Vries, A. H., Marrink, S. J. & Berendsen, H. J. C. Efficient algorithms for langevin and DPD dynamics. J. Chem. Theory Comput. 8, 3637–3649 (2012).

    CAS  Article  Google Scholar 

  50. Parrinello, M. & Rahman, A. Polymorphic transitions in single crystals: a new molecular dynamics method. J. Appl. Phys. 52, 7182–7190 (1981).

    CAS  Article  Google Scholar 

  51. Nosé, S. & Klein, M. L. Constant pressure molecular dynamics for molecular systems. Mol. Phys. 50, 1055–1076 (1983).

    Article  Google Scholar 

  52. Jorgensen, W. L., Maxwell, D. S. & Tirado-Rives, J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118, 11225–11236 (1996).

    CAS  Article  Google Scholar 

  53. Kony, D., Damm, W., Stoll, S. & Van Gunsteren, W. F. An improved OPLS-AA force field for carbohydrates. J. Comput. Chem. 23, 1416–1429 (2002).

    CAS  Article  Google Scholar 

  54. Berendsen, H. J. C., Grigera, J. R. & Straatsma, T. P. The missing term in effective pair potentials. J. Phys. Chem. 91, 6269–6271 (1987).

    CAS  Article  Google Scholar 

  55. Miyamoto, S. & Kollman, P. A. Settle: an analytical version of the SHAKE and RATTLE algorithm for rigid water models. J. Comput. Chem. 13, 952–962 (1992).

    CAS  Article  Google Scholar 

  56. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    CAS  Article  Google Scholar 

  57. VandeVondele, J. & Hutter, J. Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases. J. Chem. Phys. 127, 114105 (2007).

    Article  Google Scholar 

  58. Goedecker, S., Teter, M. & Hutter, J. Separable dual-space Gaussian pseudopotentials. Phys. Rev. B 54, 1703–1710 (1996).

    CAS  Article  Google Scholar 

  59. Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011).

    CAS  Article  Google Scholar 

  60. Bussi, G., Donadio, D. & Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys. 126, 14101 (2007).

    Article  Google Scholar 

  61. Grossfield, A. WHAM: the weighted histogram analysis method, version 2.0.9 (Rochester University, Rochester, NY, 2013); http://membrane.urmc.rochester.edu/content/wham

  62. Sunda, A. P. & Venkatnathan, A. Molecular dynamics simulations of triflic acid and triflate ion/water mixtures: a proton conducting electrolytic component in fuel cells. J. Comput. Chem. 32, 3319–3328 (2011).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Department of Energy Great Lakes Bioenergy Research Center (https://www.glbrc.org), which is supported by the US Department of Energy, Office of Science, Office of Biological and Environmental Research, through the Cooperative Agreement BER DE-FC02-07ER64494 between The Board of Regents of the University of Wisconsin System and by the National Science Foundation Engineering Research Center for Biorenewable Chemicals (https://www.cbirc.iastate.edu) under Award No. EEC-0813570. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation. J.A.D. was supported by the US Department of Energy, Office of Basic Energy Sciences (DE-SC0014058). The authors acknowledge the Minnesota Supercomputing Institute (https://www.msi.umn.edu/) at the University of Minnesota for providing resources that contributed to the research results reported within this article. M.N. thanks M. Mahanthappa for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

M.A.M., B.D. and K.M. carried out the reaction kinetics experiments and analysed the data. C.S. and P.B. performed the molecular dynamics simulations and density functional theory calculations. M.A.M. and J.A.D. conceived the work, and all authors designed and discussed the experimental and computational research. All authors were involved in writing the manuscript.

Corresponding author

Correspondence to James A. Dumesic.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–7; Supplementary Discussion; Supplementary Figures 1–24; Supplementary References.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mellmer, M.A., Sanpitakseree, C., Demir, B. et al. Solvent-enabled control of reactivity for liquid-phase reactions of biomass-derived compounds. Nat Catal 1, 199–207 (2018). https://doi.org/10.1038/s41929-018-0027-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-018-0027-3

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing