Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Control of interfacial acid–metal catalysis with organic monolayers

Abstract

Numerous important reactions consisting of combinations of steps (for example, hydrogenation and dehydration) have been found to require bifunctional catalysts with both a late-transition metal component and an acidic component. Here, we develop a method for preparing and controlling bifunctional sites by employing organic acid-functionalized monolayer films tethered to the support as an alternative to traditional ligand-on-metal strategies. This approach was used to create a reactive interface between the phosphonic acid monolayers and metal particles, where active-site properties such as acid strength were manipulated via tuning of the molecular structure of the organic ligands within the monolayer. After surface modification, the resultant catalysts exhibited markedly improved selectivity and activity towards hydrodeoxygenation of aromatic alcohols and phenolics. Moreover, by tuning the ligand of the acidic modifier, the rate of deactivation was significantly reduced.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Characterization of catalyst materials.
Fig. 2: HDO of benzyl alcohol and furfuryl alcohol.
Fig. 3: Acid-site characterization and HDO performance of modified and unmodified catalysts.
Fig. 4: Correlation of HDO selectivity and catalyst stability with Brønsted acid strength.
Fig. 5: HDO of phenolics using modified and unmodified catalysts.

References

  1. 1.

    Huber, G. W., Chheda, J. N., Barrett, C. J. & Dumesic, J. A. Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates. Science 308, 1446–1450 (2005).

    CAS  Article  Google Scholar 

  2. 2.

    Chheda, J. N., Huber, G. W. & Dumesic, J. A. Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals. Angew. Chem. Int. Ed. 46, 7164–7183 (2007).

    CAS  Article  Google Scholar 

  3. 3.

    Ruppert, A. M., Weinberg, K. & Palkovits, R. Hydrogenolysis goes bio: from carbohydrates and sugar alcohols to platform chemicals. Angew. Chem. Int. Ed. 51, 2564–2601 (2012).

    CAS  Article  Google Scholar 

  4. 4.

    Chia, M. et al. Selective hydrogenolysis of polyols and cyclic ethers over bifunctional surface sites on rhodium–rhenium catalysts. J. Am. Chem. Soc. 133, 12675–12689 (2011).

    CAS  Article  Google Scholar 

  5. 5.

    Huber, G. W., Cortright, R. D. & Dumesic, J. A. Renewable alkanes by aqueous-phase reforming of biomass-derived oxygenates. Angew. Chem. Int. Ed. 43, 1549–1551 (2004).

    CAS  Article  Google Scholar 

  6. 6.

    Zhao, C., Kou, Y., Lemonidou, A. A., Li, X. & Lercher, J. A. Highly selective catalytic conversion of phenolic bio-oil to alkanes. Angew. Chem. Int. Ed. 48, 3987–3990 (2009).

    CAS  Article  Google Scholar 

  7. 7.

    Chen, J. et al. Hydrodeoxygenation of phenol and derivatives over an ionic liquid-like copolymer stabilized nanocatalyst in aqueous media. ChemCatChem 5, 1598–1605 (2013).

    CAS  Article  Google Scholar 

  8. 8.

    Yan, N., Yuan, Dykeman, R., Kou, Y. & Dyson, P. J. Hydrodeoxygenation of lignin-derived phenols into alkanes by using nanoparticle catalysts combined with Brønsted acidic ionic liquids. Angew. Chem. Int. Ed. 49, 5549–5553 (2010).

    CAS  Article  Google Scholar 

  9. 9.

    Luska, K. L., Migowski, P., El Sayed, S. & Leitner, W. Synergistic interaction within bifunctional ruthenium nanoparticle/SILP catalysts for the selective hydrodeoxygenation of phenols. Angew. Chem. Int. Ed. 54, 15750–15755 (2015).

    CAS  Article  Google Scholar 

  10. 10.

    Calle-Vallejo, F., Loffreda, D., Koper, M. T. M. & Sautet, P. Introducing structural sensitivity into adsorption–energy scaling relations by means of coordination numbers. Nat. Chem. 7, 403–410 (2015).

    CAS  Article  Google Scholar 

  11. 11.

    Medlin, J. W. & Montemore, M. M. Heterogeneous catalysis: scaling the rough heights. Nat. Chem. 7, 378–380 (2015).

    CAS  Article  Google Scholar 

  12. 12.

    Zhao, C. & Lercher, J. A. Upgrading pyrolysis oil over Ni/HZSM-5 by cascade reactions. Angew. Chem. Int. Ed. 51, 5935–5940 (2012).

    CAS  Article  Google Scholar 

  13. 13.

    Nelson, R. C. et al. Experimental and theoretical insights into the hydrogen-efficient direct hydrodeoxygenation mechanism of phenol over Ru/TiO2. ACS Catal. 5, 6509–6523 (2015).

    CAS  Article  Google Scholar 

  14. 14.

    Wang, L. et al. Mesoporous ZSM-5 zeolite-supported Ru nanoparticles as highly efficient catalysts for upgrading phenolic biomolecules. ACS Catal. 5, 2727–2734 (2015).

    CAS  Article  Google Scholar 

  15. 15.

    Hong, D.-Y., Miller, S. J., Agrawal, P. K. & Jones, C. W. Hydrodeoxygenation and coupling of aqueous phenolics over bifunctional zeolite-supported metal catalysts. Chem. Commun. 46, 1038–1040 (2010).

    CAS  Article  Google Scholar 

  16. 16.

    Hayashi, T., Kawamura, N. & Ito, Y. Asymmetric hydrogenation of trisubstituted acrylic acids catalyzed by a chiral (aminoalkyl)ferrocenylphosphine–rhodium complex. J. Am. Chem. Soc. 109, 7876–7878 (1987).

    CAS  Article  Google Scholar 

  17. 17.

    Das, S., Incarvito, C. D., Crabtree, R. H. & Brudvig, G. W. Molecular recognition in the selective oxygenation of saturated C–H bonds by a dimanganese catalyst. Science 312, 1941–1943 (2006).

    CAS  Article  Google Scholar 

  18. 18.

    Kahsar, K. R., Schwartz, D. K. & Medlin, J. W. Control of metal catalyst selectivity through specific noncovalent molecular interactions. J. Am. Chem. Soc. 136, 520–526 (2014).

    CAS  Article  Google Scholar 

  19. 19.

    Schoenbaum, C. A., Schwartz, D. K. & Medlin, J. W. Controlling the surface environment of heterogeneous catalysts using self-assembled monolayers. Acc. Chem. Res. 47, 1438–1445 (2014).

    CAS  Article  Google Scholar 

  20. 20.

    Love, J. C., Estroff, L. A., Kriebel, J. K., Nuzzo, R. G. & Whitesides, G. M. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev. 105, 1103–1170 (2005).

    CAS  Article  Google Scholar 

  21. 21.

    Marshall, S. T. et al. Controlled selectivity for palladium catalysts using self-assembled monolayers. Nat. Mater. 9, 853–858 (2010).

    CAS  Article  Google Scholar 

  22. 22.

    Hanson, E. L., Schwartz, J., Nickel, B., Koch, N. & Danisman, M. F. Bonding self-assembled, compact organophosphonate monolayers to the native oxide surface of silicon. J. Am. Chem. Soc. 125, 16074–16080 (2003).

    CAS  Article  Google Scholar 

  23. 23.

    Hotchkiss, P. J. et al. The modification of indium tin oxide with phosphonic acids: mechanism of binding, tuning of surface properties, and potential for use in organic electronic applications. Acc. Chem. Res. 45, 337–346 (2012).

    CAS  Article  Google Scholar 

  24. 24.

    Hostetler, M. J., Stokes, J. J. & Murray, R. W. Infrared spectroscopy of three-dimensional self-assembled monolayers: N-alkanethiolate monolayers on gold cluster compounds. Langmuir 12, 3604–3612 (1996).

    CAS  Article  Google Scholar 

  25. 25.

    Corpuz, A. R., Pang, S. H., Schoenbaum, C. A. & Medlin, J. W. Hydrogen exposure effects on Pt/Al2O3 catalysts coated with thiolate monolayers. Langmuir 30, 14104–14110 (2014).

    CAS  Article  Google Scholar 

  26. 26.

    Busca, G. Acid catalysts in industrial hydrocarbon chemistry. Chem. Rev. 107, 5366–5410 (2007).

    CAS  Article  Google Scholar 

  27. 27.

    Wagner, C. D. et al. NIST Standard Reference Database 20 Version 3.4 (National Institute of Standards and Technology, Gaithersburg, MD, 2003); https://srdata.nist.gov/xps/

  28. 28.

    Mortlock, R. F., Bell, A. T. & Radke, C. J. Phosphorus-31 and aluminum-27 NMR investigations of the effects of pH on aqueous solutions containing aluminum and phosphorus. J. Phys. Chem. 97, 775–782 (1993).

    CAS  Article  Google Scholar 

  29. 29.

    Robinson, A. M., Hensley, J. E. & Medlin, J. W. Bifunctional catalysts for upgrading of biomass-derived oxygenates: a review. ACS Catal. 6, 5026–5043 (2016).

    CAS  Article  Google Scholar 

  30. 30.

    Corma, A., Fornés, V., Melo, F. V. & Herrero, J. Comparison of the information given by ammonia t.p.d. and pyridine adsorption–desorption on the acidity of dealuminated HY and LaHY zeolite cracking catalysts. Zeolites 7, 559–563 (1987).

    CAS  Article  Google Scholar 

  31. 31.

    Gokhale, S. D., Jolly, W. L., Thomas, S. & Britton, D. in Inorganic Syntheses Vol. 9 (ed. Tyree, S. Y. Jr) 56–58 (John Wiley & Sons, Hoboken, NJ, 1967).

  32. 32.

    Ramis, G. et al. Phosphoric acid on oxide carriers. 2. Surface acidity and reactivity toward olefins. Langmuir 5, 917–923 (1989).

    CAS  Article  Google Scholar 

  33. 33.

    Huber, G. W., Iborra, S. & Corma, A. Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem. Rev. 106, 4044–4098 (2006).

    CAS  Article  Google Scholar 

  34. 34.

    Zanuttini, M. S., Dalla Costa, B. O., Querini, C. A. & Peralta, M. A. Hydrodeoxygenation of m-cresol with Pt supported over mild acid materials. Appl. Catal. A 482, 352–361 (2014).

    CAS  Article  Google Scholar 

  35. 35.

    Lien, C. H. & Medlin, J. W. Promotion of activity and selectivity by alkanethiol mono layers for Pd-catalyzed benzyl alcohol hydrodeoxygenation. J. Phys. Chem. C 118, 23783–23789 (2014).

    CAS  Article  Google Scholar 

  36. 36.

    Zeidan, R. K., Hwang, S. J. & Davis, M. E. Multifunctional heterogeneous catalysts: SBA-15-containing primary amines and sulfonic acids. Angew. Chem. Int. Ed. 45, 6332–6335 (2006).

    CAS  Article  Google Scholar 

  37. 37.

    Zeidan, R. K. & Davis, M. E. The effect of acid–base pairing on catalysis: an efficient acid–base functionalized catalyst for aldol condensation. J. Catal. 247, 379–382 (2007).

    CAS  Article  Google Scholar 

  38. 38.

    Brunelli, N. A. & Jones, C. W. Tuning acid–base cooperativity to create next generation silica-supported organocatalysts. J. Catal. 308, 60–72 (2013).

    CAS  Article  Google Scholar 

  39. 39.

    Pang, S. H., Schoenbaum, C. A., Schwartz, D. K. & Medlin, J. W. Directing reaction pathways by catalyst active-site selection using self-assembled monolayers. Nat. Commun. 4, 2448 (2013).

    Google Scholar 

  40. 40.

    Kumar, G., Lien, C.-H., Janik, M. J. & Medlin, J. W. Catalyst site selection via control over noncovalent interactions in self-assembled monolayers. ACS Catal. 6, 5086–5094 (2016).

    CAS  Article  Google Scholar 

  41. 41.

    Lien, C. H. & Medlin, J. W. Control of Pd catalyst selectivity with mixed thiolate monolayers. J. Catal. 339, 38–46 (2016).

    CAS  Article  Google Scholar 

  42. 42.

    Baylet, A. et al. In situ Raman and in situ XRD analysis of PdO reduction and Pd° oxidation supported on γ-Al2O3 catalyst under different atmospheres. Phys. Chem. Chem. Phys. 13, 4607–4613 (2011).

    CAS  Article  Google Scholar 

  43. 43.

    Singh, N. et al. Electrocatalytic hydrogenation of phenol over platinum and rhodium: unexpected temperature effects resolved. ACS Catal. 6, 7466–7470 (2016).

    CAS  Article  Google Scholar 

  44. 44.

    Frisch, M. J. et al. Gaussian 09, Revision A.02 (Gaussian, Wallingford, CT, 2009).

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the National Science Foundation (Designing Materials to Revolutionize and Engineer our Future grant 1436206) and the Basic Energy Sciences Program of the Chemical Sciences, Geosciences, and Biosciences Division of the Office of Science at the US Department of Energy under grant DE-SC0005239. We also thank T. Van Cleve, C.-H. Lien, P. Coan and M. V. Rodrigues for useful discussions and assistance with measurements. A portion of the research was performed using computational resources sponsored by the Department of Energy’s Office of Energy Efficiency and Renewable Energy and located at the National Renewable Energy Laboratory.

Author information

Affiliations

Authors

Contributions

J.Z. conducted the material synthesis, reaction tests and characterizations except for the STEM-EDS, XPS and 31P nuclear magnetic resonance analysis. L.D.E developed the acid deposition method and performed the density functional theory calculations. B.W. and E.N. conducted the STEM-EDS analysis. M.J.D. and S.P. conducted the XPS analysis. C.S. conducted the 31P nuclear magnetic resonance analysis. All authors discussed the results and commented on the manuscript. J.W.M. supervised the project.

Corresponding author

Correspondence to J. Will Medlin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–23

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Ellis, L.D., Wang, B. et al. Control of interfacial acid–metal catalysis with organic monolayers. Nat Catal 1, 148–155 (2018). https://doi.org/10.1038/s41929-017-0019-8

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing