Article | Published:

Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction

Nature Catalysisvolume 1pages103110 (2018) | Download Citation


The reduction of carbon dioxide to renewable fuels and feedstocks offers opportunities for large-scale, long-term energy storage. The synthesis of efficient CO2 reduction electrocatalysts with high C2:C1 selectivity remains a field of intense interest. Here we present electro-redeposition, the dissolution and redeposition of copper from a sol–gel, to enhance copper catalysts in terms of their morphology, oxidation state and consequent performance. We utilized in situ soft X-ray absorption spectroscopy to track the oxidation state of copper under CO2 reduction conditions with time resolution. The sol–gel material slows the electrochemical reduction of copper, enabling control over nanoscale morphology and the stabilization of Cu+ at negative potentials. CO2 reduction experiments, in situ X-ray spectroscopy and density functional theory simulations revealed the beneficial interplay between sharp morphologies and Cu+ oxidation state. The catalyst exhibits a partial ethylene current density of 160 mA cm–2 (−1.0 V versus reversible hydrogen electrode) and an ethylene/methane ratio of 200.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Armstrong, R. C. et al. The frontiers of energy. Nat. Energy 1, 15020 (2016).

  2. 2.

    Montoya, J. H. et al. Materials for solar fuels and chemicals. Nat. Mater. 16, 70–81 (2017).

  3. 3.

    Peterson, A. A., Abild-Pedersen, F., Studt, F., Rossmeisl, J. & Nørskov, J. K. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ. Sci. 3, 1311 (2010).

  4. 4.

    Kuhl, K. P. et al. New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ. Sci. 5, 7050 (2012).

  5. 5.

    Van Miltenburg, A., Zhu, W., Kapteijn, F. & Moulijn, J. A. Adsorptive separation of light olefin/paraffin mixtures. Chem. Eng. Res. Des. 84, 350–354 (2006).

  6. 6.

    Li, C. W. & Kanan, M. W. CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films. J. Am. Chem. Soc. 134, 7231–7234 (2012).

  7. 7.

    Eilert, A. et al. Subsurface oxygen in oxide-derived copper electrocatalysts for carbon dioxide reduction. J. Phys. Chem. Lett. 8, 285–290 (2017).

  8. 8.

    Verdaguer-Casadevall, A. et al. Probing the active surface sites for CO reduction on oxide-derived copper electrocatalysts. J. Am. Chem. Soc. 137, 9808–9811 (2015).

  9. 9.

    Mistry, H. et al. Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene. Nat. Commun. 7, 12123 (2016).

  10. 10.

    Loiudice, A. et al. Tailoring copper nanocrystals towards C2 products in electrochemical CO2 reduction. Angew. Chem. Int. Ed. 55, 5789–5792 (2016).

  11. 11.

    Lee, S., Kim, D. & Lee, J. Electrocatalytic production of C3-C4 compounds by conversion of CO2 on a chloride-induced bi-phasic Cu2O-Cu catalyst. Angew. Chem. Int. Ed. 54, 14701–14705 (2015).

  12. 12.

    Chen, C. S. et al. Stable and selective electrochemical reduction of carbon dioxide to ethylene on copper mesocrystals. Catal. Sci. Technol. 5, 161–168 (2015).

  13. 13.

    Kas, R. et al. Electrochemical CO2 reduction on Cu2O-derived copper nanoparticles: controlling the catalytic selectivity of hydrocarbons. Phys. Chem. Chem. Phys. 16, 12194 (2014).

  14. 14.

    Handoko, A. D. et al. Mechanistic insights into the selective electroreduction of carbon dioxide to ethylene on Cu2O-derived copper catalysts. J. Phys. Chem. C. 120, 20058–20067 (2016).

  15. 15.

    Gao, D. et al. Plasma-activated copper nanocube catalysts for efficient carbon dioxide electroreduction to hydrocarbons and alcohols. ACS Nano 11, 4825–4831 (2017).

  16. 16.

    Hori, Y., Takahashi, I., Koga, O. & Hoshi, N. Selective formation of C2 compounds from electrochemical reduction of CO2 at a series of copper single crystal electrodes. J. Phys. Chem. B 106, 15–17 (2002).

  17. 17.

    Kwon, Y., Lum, Y., Clark, E. L., Ager, J. W. & Bell, A. T. CO2 electroreduction with enhanced ethylene and ethanol selectivity by nanostructuring polycrystalline copper. ChemElectroChem 3, 1012–1019 (2016).

  18. 18.

    Feng, X., Jiang, K., Fan, S. & Kanan, M. W. Grain-boundary-dependent CO2 electroreduction activity. J. Am. Chem. Soc. 137, 4606–4609 (2015).

  19. 19.

    Eilert, A., Roberts, F. S., Friebel, D. & Nilsson, A. Formation of copper catalysts for CO2 reduction with high ethylene/methane product ratio investigated with in situ X-ray absorption spectroscopy. J. Phys. Chem. Lett. 7, 1466–1470 (2016).

  20. 20.

    Li, Y. et al. Structure-sensitive CO2 electroreduction to hydrocarbons on ultrathin 5-fold twinned copper nanowires. Nano Lett. 17, 1312–1317 (2017).

  21. 21.

    Kim, D., Resasco, J., Yu, Y., Asiri, A. M. & Yang, P. Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold–copper bimetallic nanoparticles. Nat. Commun. 5, 4948 (2014).

  22. 22.

    Roberts, F. S., Kuhl, K. P. & Nilsson, A. High selectivity for ethylene from carbon dioxide reduction over copper nanocube electrocatalysts. Angew. Chem. Int. Ed. 54, 5179–5182 (2015).

  23. 23.

    Raciti, D., Livi, K. J. & Wang, C. Highly dense Cu nanowires for low-overpotential CO2 reduction. Nano Lett. 15, 6829–6835 (2015).

  24. 24.

    Mistry, H., Varela, A. S., Kühl, S., Strasser, P. & Cuenya, B. R. Nanostructured electrocatalysts with tunable activity and selectivity. Nat. Rev. Mater. 1, 16009 (2016).

  25. 25.

    Huan, T. N. et al. Porous dendritic copper: an electrocatalyst for highly selective CO2 reduction to formate in water/ionic liquid electrolyte. Chem. Sci. 8, 742–747 (2017).

  26. 26.

    Reller, C. et al. Selective electroreduction of CO2 toward ethylene on nano dendritic copper catalysts at high current density. Adv. Energy Mater. 7, 1602114 (2017).

  27. 27.

    Burdyny, T. et al. Nanomorphology-enhanced gas-evolution intensifies CO2 reduction electrochemistry. ACS Sustain. Chem. Eng. 5, 4031–4040 (2017).

  28. 28.

    Liu, M. et al. Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration. Nature 537, 382–386 (2016).

  29. 29.

    Klinkova, A. et al. Rational design of dfficient palladium catalysts for electroreduction of carbon dioxide to formate. ACS Catal. 6, 8115–8120 (2016).

  30. 30.

    Saberi Safaei, T. et al. High-density nanosharp microstructures enable efficient CO2 electroreduction. Nano Lett. 16, 7224–7228 (2016).

  31. 31.

    Zheng, X. et al. Theory-driven design of high-valence metal sites for water oxidation confirmed using in situ soft X-ray absorption. Nat. Chem. (2017).

  32. 32.

    Zheng, X. et al. Sulfur-modulated tin sites enable highly selective electrochemical reduction of CO2 to formate. Joule 1, 794–805 (2017).

  33. 33.

    Chen, L. D., Urushihara, M., Chan, K. & Nørskov, J. K. Electric field effects in electrochemical CO2 reduction. ACS Catal. 6, 7133–7139 (2016).

  34. 34.

    Zhang, B. et al. Homogeneously dispersed multimetal oxygen-evolving catalysts. Science 352, 333–337 (2016).

  35. 35.

    Sisk, C. N. & Hope-Weeks, L. J. Copper(ii) aerogels via 1,2-epoxide gelation. J. Mater. Chem. 18, 2607 (2008).

  36. 36.

    Ma, S. et al. One-step electrosynthesis of ethylene and ethanol from CO2 in an alkaline electrolyzer. J. Power Sources 301, 219–228 (2016).

  37. 37.

    Patterson, A. L. The Scherrer formula for X-Ray particle size determination. Phys. Rev. 56, 978–982 (1939).

  38. 38.

    Malcherek, T. et al. Structures of the pseudo-trigonal polymorphs of Cu2(OH)3Cl. Acta Crystallogr. Sect. B Struct. Sci. 65, 334–341 (2009).

  39. 39.

    Neuburger, M. C. Prazisionsmessung der Gitterkonstante von Cuprooxyd Cu2O. Z. Phys. 67, 845–850 (1931).

  40. 40.

    Fortes, A. D., Suard, E., Lemée-Cailleau, M.-H., Pickard, C. J. & Needs, R. J. Crystal structure of ammonia monohydrate phase II. J. Am. Chem. Soc. 131, 13508–13515 (2009).

  41. 41.

    Rosen, J. et al. Electrodeposited Zn dendrites with enhanced CO selectivity for electrocatalytic CO2 reduction. ACS Catal. 5, 4586–4591 (2015).

  42. 42.

    Jiang, P. et al. Experimental and theoretical investigation of the electronic structure of Cu2O and CuO thin films on Cu(110) using X-ray photoelectron and absorption spectroscopy. J. Chem. Phys. 138, 24704 (2013).

  43. 43.

    Grioni, M. et al. Studies of copper valence states with Cu L3 X-ray-absorption spectroscopy. Phys. Rev. B 39, 1541–1545 (1989).

  44. 44.

    McIntyre, N. S., Sunder, S., Shoesmith, D. W. & Stanchell, F. W. Chemical information from XPS—applications to the analysis of electrode surfaces. J. Vac. Sci. Technol. 18, 714–721 (1981).

  45. 45.

    Fuggle, J. C., Källne, E., Watson, L. M. & Fabian, D. J. Electronic structure of aluminum and aluminum-noble-metal alloys studied by soft-X-ray and X-ray photoelectron spectroscopies. Phys. Rev. B 16, 750–761 (1977).

  46. 46.

    McIntyre, N. S. & Cook, M. G. X-ray photoelectron studies on some oxides and hydroxides of cobalt, nickel, and copper. Anal. Chem. 47, 2208–2213 (1975).

  47. 47.

    Zhang, X., Wang, G., Liu, X., Wu, H. & Fang, B. Copper dendrites: synthesis, mechanism discussion, and application in determination of l-tyrosine. Cryst. Growth Des. 8, 1430–1434 (2008).

  48. 48.

    Schouten, K. J. P., Kwon, Y., van der Ham, C. J. M., Qin, Z. & Koper, M. T. M. A new mechanism for the selectivity to C1 and C2 species in the electrochemical reduction of carbon dioxide on copper electrodes. Chem. Sci. 2, 1902 (2011).

  49. 49.

    Nie, X., Esopi, M. R., Janik, M. J. & Asthagiri, A. Selectivity of CO2 reduction on copper electrodes: the role of the kinetics of elementary steps. Angew. Chem. Int. Ed. 52, 2459–2462 (2013).

  50. 50.

    Xiao, H., Cheng, T. & Goddard, W. A. Atomistic mechanisms underlying selectivities in C1 and C2 products from electrochemical reduction of CO on Cu(111). J. Am. Chem. Soc. 139, 130–136 (2017).

  51. 51.

    Cheng, T., Xiao, H. & Goddard, W. A. Full atomistic reaction mechanism with kinetics for CO reduction on Cu(100) from ab initio molecular dynamics free-energy calculations at 298 K. Proc. Natl Acad. Sci. USA 114, 1795–1800 (2017).

  52. 52.

    Xiao, H., Goddard, W. A., Cheng, T. & Liu, Y. Cu metal embedded in oxidized matrix catalyst to promote CO2 activation and CO dimerization for electrochemical reduction of CO2. Proc. Natl Acad. Sci. USA 114, 6685–6688 (2017).

  53. 53.

    Cheng, T., Xiao, H. & Goddard, W. A. Nature of the active sites for CO reduction on copper nanoparticles; suggestions for optimizing performance. J. Am. Chem. Soc. 139, 11642–11645 (2017).

  54. 54.

    Kortlever, R., Shen, J., Schouten, K. J. P., Calle-Vallejo, F. & Koper, M. T. M. Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide. J. Phys. Chem. Lett. 6, 4073–4082 (2015).

  55. 55.

    Xiao, H., Cheng, T., Goddard, W. A. III. & Sundararaman, R. Mechanistic explanation of the pH dependence and onset potentials for hydrocarbon products from electrochemical reduction of CO on Cu (111). J. Am. Chem. Soc. 138, 483–486 (2016).

  56. 56.

    Hafner, J. Ab-initio simulations of materials using VASP: density-functional theory and beyond. J. Comput. Chem. 29, 2044–2078 (2008).

  57. 57.

    Riskin, M., Basnar, B., Katz, E. & Willner, I. Cyclic control of the surface properties of a monolayer-functionalized electrode by the electrochemical generation of Hg nanoclusters. Chem. Eur. J. 12, 8549–8557 (2006).

Download references


This work was supported by the Canadian Institute for Advanced Research (CIFAR) Bio-inspired Energy Program, the Ontario Research Fund (ORF-RE-08-034), and the Natural Sciences and Engineering Research Council (NSERC) of Canada. This work was also supported by the Director, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division, of the US Department of Energy under contract no. DE-AC02-05CH11231 within the Catalysis Research Program (FWP No. CH030201). The authors thank the Canadian Light Source (CLS) for support in the form of a travel grant. The authors acknowledge Y. Li for valuable scientific discussion and assistance with TEM measurements, A. Kiani for assistance with SEM measurements, Y. Hu and M. Norouzi Banis for assistance with in situ XAS cell set-up, and P. Brodersen from the Ontario Centre for the Characterisation of Advanced Materials (OCCAM) Center for assistance with Auger microscopy measurements. P.D.L thanks the Research Council (NSERC) of Canada for the Canadian Graduate Scholarship — Doctoral award and the Michael Smith Foreign Supplement award. M.B.R. gratefully acknowledges support from the CIFAR Bio-Inspired Solar Energy Program. Computations were performed on the SOSCIP Consortium’s Blue Gene/Q computing platform. SOSCIP is funded by the Federal Economic Development Agency of Southern Ontario, the Province of Ontario, IBM Canada Ltd., Ontario Centres of Excellence, Mitacs and 15 Ontario academic member institutions.

Author information

Author notes

  1. Phil De Luna and Rafael Quintero-Bermudez contributed equally to this work.


  1. Department of Materials Science and Engineering, University of Toronto, Toronto, ON, Canada

    • Phil De Luna
  2. Bio-inspired Solar Energy Program, Canadian Institute for Advanced Research, Toronto, ON, Canada

    • Phil De Luna
    • , Michael B. Ross
    • , Peidong Yang
    •  & Edward H. Sargent
  3. Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA

    • Phil De Luna
    • , Michael B. Ross
    •  & Peidong Yang
  4. Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada

    • Rafael Quintero-Bermudez
    • , Cao-Thang Dinh
    • , Oleksandr S. Bushuyev
    • , Petar Todorović
    •  & Edward H. Sargent
  5. Canadian Light Source Inc. (CLSI), Saskatoon, SK, Canada

    • Tom Regier
  6. Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada

    • Shana O. Kelley
  7. Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada

    • Shana O. Kelley
  8. Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA, USA

    • Peidong Yang
  9. Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA

    • Peidong Yang
  10. Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA

    • Peidong Yang
  11. Kavli Energy Nanosciences Institute, University of California, Berkeley, Berkeley, CA, USA

    • Peidong Yang


  1. Search for Phil De Luna in:

  2. Search for Rafael Quintero-Bermudez in:

  3. Search for Cao-Thang Dinh in:

  4. Search for Michael B. Ross in:

  5. Search for Oleksandr S. Bushuyev in:

  6. Search for Petar Todorović in:

  7. Search for Tom Regier in:

  8. Search for Shana O. Kelley in:

  9. Search for Peidong Yang in:

  10. Search for Edward H. Sargent in:


P.D.L. synthesized the catalyst, performed DFT calculations, SEM, TEM, XAS and electrochemical experiments, and data analysis, and wrote the manuscript. R.Q.-B. performed XAS, XPS and SAM experiments and data analysis, and edited the manuscript. C.-T.D. performed flow-cell experiments and edited the manuscript. M.B.R. edited the manuscript and guided the design of experiments. O.S.B. performed NMR experiments and analysis. P.T. performed XRD experiments. T.R. supervised and guided XAS experiments. P.Y. and S.O.K. supervised experiments. E.H.S designed the study, edited the manuscript and supervised experiments.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Edward H. Sargent.

Supplementary information

  1. Supplementary Information

    Supplementary Methods, Supplementary Discussion, Supplementary Figures 1–16, Supplementary Tables 1–6, Supplementary References.

About this article

Publication history





Further reading