High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials

Abstract

Hydrogen peroxide (H2O2) is a valuable chemical with a wide range of applications, but the current industrial synthesis of H2O2 involves an energy-intensive anthraquinone process. The electrochemical synthesis of H2O2 from oxygen reduction offers an alternative route for on-site applications; the efficiency of this process depends greatly on identifying cost-effective catalysts with high activity and selectivity. Here, we demonstrate a facile and general approach to catalyst development via the surface oxidation of abundant carbon materials to significantly enhance both the activity and selectivity (~90%) for H2O2 production by electrochemical oxygen reduction. We find that both the activity and selectivity are positively correlated with the oxygen content of the catalysts. The density functional theory calculations demonstrate that the carbon atoms adjacent to several oxygen functional groups (–COOH and C–O–C) are the active sites for oxygen reduction reaction via the two-electron pathway, which are further supported by a series of control experiments.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Oxygen reduction performance of CNTs and O-CNTs.
Fig. 2: Characterizations of CNTs and O-CNTs.
Fig. 3: ORR activities of O-CNTs with diverse oxygen content and other carbon materials.
Fig. 4: DFT results of the ORR activities of different oxygen functional groups.

References

  1. 1.

    Myers, R. L. The 100 Most Important Chemical Compounds (Greenwood Press, London, 2007).

    Google Scholar 

  2. 2.

    Fukuzumi, S., Yamada, Y. & Karlin, K. D. Hydrogen peroxide as a sustainable energy carrier: electrocatalytic production of hydrogen peroxide and the fuel cell. Electrochim. Acta 82, 493–511 (2012).

    CAS  Article  Google Scholar 

  3. 3.

    Campos‐Martin, J. M., Blanco‐Brieva, G. & Fierro, J. L. Hydrogen peroxide synthesis: an outlook beyond the anthraquinone process. Angew. Chem. Int. Ed. 45, 6962–6984 (2006).

    Article  Google Scholar 

  4. 4.

    Edwards, J. K. et al. Switching off hydrogen peroxide hydrogenation in the direct synthesis process. Science 323, 1037–1041 (2009).

    CAS  Article  Google Scholar 

  5. 5.

    Solsona, B. E. et al. Direct synthesis of hydrogen peroxide from H2 and O2 using Al2O3 supported Au–Pd catalysts. Chem. Mater. 18, 2689–2695 (2006).

    CAS  Article  Google Scholar 

  6. 6.

    Freakley, S. J. et al. Palladium–tin catalysts for the direct synthesis of H2O2 with high selectivity. Science 351, 965–968 (2016).

    CAS  Article  Google Scholar 

  7. 7.

    Samanta, C. Direct synthesis of hydrogen peroxide from hydrogen and oxygen: an overview of recent developments in the process. Appl. Catal. A Gen. 350, 133–149 (2008).

    CAS  Article  Google Scholar 

  8. 8.

    Edwards, J. K., Freakley, S. J., Lewis, R. J., Pritchard, J. C. & Hutchings, G. J. Advances in the direct synthesis of hydrogen peroxide from hydrogen and oxygen. Catal. Today 248, 3–9 (2015).

    CAS  Article  Google Scholar 

  9. 9.

    Rankin, R. B. & Greeley, J. Trends in selective hydrogen peroxide production on transition metal surfaces from first principles. ACS Catal. 2, 2664–2672 (2012).

    CAS  Article  Google Scholar 

  10. 10.

    Solsona, B. E. et al. Direct synthesis of hydrogen peroxide from H2 and O2 using Al2O3 supported Au−Pd catalysts. Chem. Mater. 18, 2689–2695 (2006).

    CAS  Article  Google Scholar 

  11. 11.

    Wood, K. N., O’Hayre, R. & Pylypenko, S. Recent progress on nitrogen/carbon structures designed for use in energy and sustainability applications. Energy Environ. Sci. 7, 1212–1249 (2014).

    CAS  Article  Google Scholar 

  12. 12.

    Drogui, P., Elmaleh, S., Rumeau, M., Bernard, C. & Rambaud, A. Hydrogen peroxide production by water electrolysis: application to disinfection. J. Appl. Electrochem. 31, 877–882 (2001).

    CAS  Article  Google Scholar 

  13. 13.

    Yamanaka, I. & Murayama, T. Neutral H2O2 synthesis by electrolysis of water and O2. Angew. Chem. Int. Ed. 47, 1900–1902 (2008).

    CAS  Article  Google Scholar 

  14. 14.

    Siahrostami, S. et al. Enabling direct H2O2 production through rational electrocatalyst design. Nat. Mater. 12, 1137–1143 (2013).

    CAS  Article  Google Scholar 

  15. 15.

    Verdaguer-Casadevall, A. et al. Trends in the electrochemical synthesis of H2O2: enhancing activity and selectivity by electrocatalytic site engineering. Nano Lett. 14, 1603–1608 (2014).

    CAS  Article  Google Scholar 

  16. 16.

    Fellinger, T.-P., Hasché, F., Strasser, P. & Antonietti, M. Mesoporous nitrogen-doped carbon for the electrocatalytic synthesis of hydrogen peroxide. J. Am. Chem. Soc. 134, 4072–4075 (2012).

    CAS  Article  Google Scholar 

  17. 17.

    Choi, C. H. et al. Hydrogen peroxide synthesis via enhanced two-electron oxygen reduction pathway on carbon-coated Pt surface. J. Phys. Chem. C 118, 30063–30070 (2014).

    CAS  Article  Google Scholar 

  18. 18.

    Park, J., Nabae, Y., Hayakawa, T. & Kakimoto, M. Highly selective two-electron oxygen reduction catalyzed by mesoporous nitrogen-doped carbon. ACS Catal. 4, 3749–3754 (2014).

    CAS  Article  Google Scholar 

  19. 19.

    Choi, C. H. et al. Tuning selectivity of electrochemical reactions by atomically dispersed platinum catalyst. Nat. Commun. 7, 10922 (2016).

    CAS  Article  Google Scholar 

  20. 20.

    Chen, Z. et al. Development of a reactor with carbon catalysts for modular-scale, low-cost electrochemical generation of H2O2. React. Chem. Eng. 2, 239–245 (2017).

    CAS  Article  Google Scholar 

  21. 21.

    Jirkovský, J. S. et al. Single atom hot-spots at Au–Pd nanoalloys for electrocatalytic H2O2 production. J. Am. Chem. Soc. 133, 19432–19441 (2011).

    Article  Google Scholar 

  22. 22.

    Perazzolo, V. et al. Nitrogen and sulfur doped mesoporous carbon as metal-free electrocatalysts for the in situ production of hydrogen peroxide. Carbon 95, 949–963 (2015).

    CAS  Article  Google Scholar 

  23. 23.

    Sidik, R. A., Anderson, A. B., Subramanian, N. P., Kumaraguru, S. P. & Popov, B. N. O2 reduction on graphite and nitrogen-doped graphite: experiment and theory. J. Phys. Chem. B 110, 1787–1793 (2006).

    CAS  Article  Google Scholar 

  24. 24.

    Hasché, F., Oezaslan, M., Strasser, P. & Fellinger, T.-P. Electrocatalytic hydrogen peroxide formation on mesoporous non-metal nitrogen-doped carbon catalyst. J. Energy Chem. 25, 251–257 (2016).

    Article  Google Scholar 

  25. 25.

    Liu, Y., Quan, X., Fan, X., Wang, H. & Chen, S. High‐yield electrosynthesis of hydrogen peroxide from oxygen reduction by hierarchically porous carbon. Angew. Chem. Int. Ed. 54, 6837–6841 (2015).

    CAS  Article  Google Scholar 

  26. 26.

    Li, N. et al. A novel carbon black graphite hybrid air-cathode for efficient hydrogen peroxide production in bioelectrochemical systems. J. Power Sources 306, 495–502 (2016).

    CAS  Article  Google Scholar 

  27. 27.

    Moraes, A. et al. Surface and catalytical effects on treated carbon materials for hydrogen peroxide electrogeneration. Electrocatalysis 7, 60–69 (2016).

    CAS  Article  Google Scholar 

  28. 28.

    Rosca, I. D., Watari, F., Uo, M. & Akasaka, T. Oxidation of multiwalled carbon nanotubes by nitric acid. Carbon 43, 3124–3131 (2005).

    CAS  Article  Google Scholar 

  29. 29.

    Liang, Y. et al. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 10, 780–786 (2011).

    CAS  Article  Google Scholar 

  30. 30.

    Assumpção, M. et al. A comparative study of the electrogeneration of hydrogen peroxide using Vulcan and Printex carbon supports. Carbon 49, 2842–2851 (2011).

    Article  Google Scholar 

  31. 31.

    Barros, W. R. Oxygen reduction to hydrogen peroxide on Fe3O4 nanoparticles supported on Printex carbon and graphene. Electrochim. Acta 162, 263–270 (2015).

    CAS  Article  Google Scholar 

  32. 32.

    Mehta, V. & Cooper, J. S. Review and analysis of PEM fuel cell design and manufacturing. J. Power Sources 114, 32–53 (2003).

    CAS  Article  Google Scholar 

  33. 33.

    Lu, Z. Superaerophilic carbon‐nanotube‐array electrode for high‐performance oxygen reduction reaction. Adv. Mater. 28, 7155–7161 (2016).

    CAS  Article  Google Scholar 

  34. 34.

    Datsyuk, V. et al. Chemical oxidation of multiwalled carbon nanotubes. Carbon 46, 833–840 (2008).

    CAS  Article  Google Scholar 

  35. 35.

    Kundu, S., Wang, Y., Xia, W. & Muhler, M. Thermal stability and reducibility of oxygen-containing functional groups on multiwalled carbon nanotube surfaces: a quantitative high-resolution XPS and TPD/TPR study. J. Phys. Chem. C 112, 16869–16878 (2008).

    CAS  Article  Google Scholar 

  36. 36.

    Andrews, R., Jacques, D., Qian, D. & Rantell, T. Multiwall carbon nanotubes: synthesis and application. Acc. Chem. Res. 35, 1008–1017 (2002).

    CAS  Article  Google Scholar 

  37. 37.

    Huang, W., Wang, Y., Luo, G. & Wei, F. 99.9% purity multi-walled carbon nanotubes by vacuum high-temperature annealing. Carbon 41, 2585–2590 (2003).

    CAS  Article  Google Scholar 

  38. 38.

    Yue, Z., Jiang, W., Wang, L., Gardner, S. & Pittman, C. U. Surface characterization of electrochemically oxidized carbon fibers. Carbon 37, 1785–1796 (1999).

    CAS  Article  Google Scholar 

  39. 39.

    Bahn, S. R. & Jacobsen, K. W. An object-oriented scripting interface to a legacy electronic structure code. Comput. Sci. Eng. 4, 56–66 (2002).

    CAS  Article  Google Scholar 

  40. 40.

    Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).

    Article  Google Scholar 

  41. 41.

    Adllan, A. A. & Dal Corso, A. Ultrasoft pseudopotentials and projector augmented-wave data sets: application to diatomic molecules. J. Phys. Condens. Matter 23, 425501 (2011).

    Article  Google Scholar 

  42. 42.

    Wellendorff, J. et al. Density functionals for surface science: exchange-correlation model development with Bayesian error estimation. Phys. Rev. B 85, 235149 (2012).

    Article  Google Scholar 

  43. 43.

    Nørskov, J. K. et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

This work was initiated by the support of the Materials Sciences and Engineering Division of the Basic Energy Sciences office at the US Department of Energy, under contract DEAC02-76-SFO0515. We acknowledge support from SUNCAT seed funding in SLAC. We also gratefully acknowledge support from the Chemical Sciences, Geosciences, and Biosciences Division of the Office of Sciences at the US Department of Energy to the SUNCAT Center for Interface Science and Catalysis under award number DE-SC0004993.

Author information

Affiliations

Authors

Contributions

Z.L., G.C., S.S. and Y.C. conceived the research. Z.L., G.C., Z.C., K.L., J.X., L.L., T.W., D.L. and Y.L. performed the experiments. S.S. and J.K.N. performed the theoretical calculation. Z.L., G.C., Z.C., T.F.J. and Y.C. contributed new reagents and analytical tools. Z.L., G.C., S.S., Z.C., T.F.J., J.K.N. and Y.C. analysed the data. Z.L., G.C., S.S., Z.C., T.F.J., J.K.N. and Y.C. wrote the paper.

Corresponding author

Correspondence to Yi Cui.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–17, Supplementary Tables 1–4, Supplementary Note 1, Supplementary Reference

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lu, Z., Chen, G., Siahrostami, S. et al. High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials. Nat Catal 1, 156–162 (2018). https://doi.org/10.1038/s41929-017-0017-x

Download citation

Further reading