Article | Published:

Unravelling structure sensitivity in CO2 hydrogenation over nickel


Continuous efforts in the field of materials science have allowed us to generate smaller and smaller metal nanoparticles, creating new opportunities to understand catalytic properties that depend on the metal particle size. Structure sensitivity is the phenomenon where not all surface atoms in a supported metal catalyst have the same activity. Understanding structure sensitivity can assist in the rational design of catalysts, allowing control over mechanisms, activity and selectivity, and thus even the viability of a catalytic reaction. Here, using a unique set of well-defined silica-supported Ni nanoclusters (1–7 nm) and advanced characterization methods, we prove how structure sensitivity influences the mechanism of catalytic CO2 reduction, the nature of which has been long debated. These findings bring fundamental new understanding of CO2 hydrogenation over Ni and allow us to control both activity and selectivity, which can be a means for CO2 emission abatement through its valorization as a low- or even negative-cost feedstock on a low-cost transition-metal catalyst.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A correction to this article is available online at

Change history

  • 05 February 2018

    In the version of this Article originally published online, in Fig. 2b, the y axis unit incorrectly included superscript –1 on Ni; it should have been just Ni. In the PDF only, in Fig. 2d–f, the label ‘Particle size (nm)’ was missing from the x axes. All of these corrections have now been made.


  1. 1.

    Adoption of the Paris Agreement FCCC/CP/2015/L.9/Rev.1 (UNFCCC, 2015).

  2. 2.

    McGlade, C. & Ekins, P. The geographical distribution of fossil fuels unused when limiting global warming to 2 °C. Nature 517, 187–190 (2015).

  3. 3.

    Ertl, G., Knözinger, H. & Weitkamp, J. (eds) Handbook of Heterogeneous Catalysis (Wiley VCH, Weinheim, 1997).

  4. 4.

    Ertl, G. Reactions at surfaces: From atoms to complexity (Nobel lecture). Angew. Chem. Int. Ed. 47, 3524–3535 (2008).

  5. 5.

    Somorjai, G. A. & Li, Y. Introduction to Surface Chemistry and Catalysis (John Wiley & Sons, New York, 2010).

  6. 6.

    Senderens, J.-B. & Sabatier, P. Nouvelles synthèses du méthane. Compt. Rend. 82, 514–516 (1902).

  7. 7.

    Sabatier, P. & Senderens, J.-B. Hydrogénation directe des oxydes du carbone en présence de divers métaux divisés. Compt. Rend. 134, 689–691 (1903).

  8. 8.

    Armstrong, R. C. et al. The frontiers of energy. Nat. Energy 1, 15020 (2016).

  9. 9.

    Hull, J. F. et al. Reversible hydrogen storage using CO2 and a proton-switchable iridium catalyst in aqueous media under mild temperatures and pressures. Nat. Chem. 4, 383–388 (2012).

  10. 10.

    Studt, F. et al. Discovery of a Ni-Ga catalyst for carbon dioxide reduction to methanol. Nat. Chem. 6, 320–324 (2014).

  11. 11.

    Schuchmann, K. & Muller, V. Direct and reversible hydrogenation of CO2 to formate by a bacterial carbon dioxide reductase. Science 342, 1382–1386 (2013).

  12. 12.

    Rostrup-Nielsen, J. R., Pedersen, K. & Sehested, J. High temperature methanation - sintering and structure sensitivity. Appl. Catal. A 330, 134–138 (2007).

  13. 13.

    Silaghi, M., Comas-Vives, A. & Copéret, C. CO2 activation on Ni/γ−Al2O3 catalysts by first-principles calculations: from ideal surfaces to supported nanoparticles. ACS Catal. 6, 4501–4505 (2016).

  14. 14.

    Kopyscinski, J., Schildhauer, T. J. & Biollaz, S. M. A. Production of synthetic natural gas (SNG) from coal and dry biomass—a technology review from 1950 to 2009. Fuel 89, 1763–1783 (2010).

  15. 15.

    Yan, Z., Ding, R., Song, L. & Qian, L. Mechanistic study of carbon dioxide reforming with methane over supported nickel catalysts. Energy Fuels 12, 1114–1120 (1998).

  16. 16.

    Lewis, N. S. & Nocera, D. G. Powering the planet: chemical challenges in solar energy utilization. Proc. Natl Acad. Sci. USA 104, 15729–15735 (2007).

  17. 17.

    Steinfeld, A. Solar thermochemical production of hydrogen—a review. Sol. Energy 78, 603–615 (2005).

  18. 18.

    Centi, G. & Perathoner, S. Opportunities and prospects in the chemical recycling of carbon dioxide to fuels. Catal. Today 148, 191–205 (2009).

  19. 19.

    Tada, S., Shimizu, T., Kameyama, H., Haneda, T. & Kikuchi, R. Ni/CeO2 catalysts with high CO2 methanation activity and high CH4 selectivity at low temperatures. Int. J. Hydrog. Energy 37, 5527–5531 (2012).

  20. 20.

    Schlögl, R. The revolution continues: Energiewende 2.0. Angew. Chem. Int. Ed. 54, 4436–4439 (2015).

  21. 21.

    van Santen, R. A. Complementary structure sensitive and insensitive catalytic relationships. Acc. Chem. Res. 42, 57–66 (2009).

  22. 22.

    van Hardeveld, R. & van Montfoort, A. The influence of crystallite size on the adsorption of molecular nitrogen on nickel, palladium and platinum. Surf. Sci. 4, 396–430 (1966).

  23. 23.

    Bezemer, G. L. et al. Cobalt particle size effects in the Fischer−Tropsch reaction studied with carbon nanofiber supported catalysts. J. Am. Chem. Soc. 128, 3956–3964 (2006).

  24. 24.

    Ren, J. et al. Insights into the mechanisms of CO2 methanation on Ni(111) surfaces by density functional theory. Appl. Surf. Sci. 351, 504–516 (2015).

  25. 25.

    den Breejen, J. P. et al. On the origin of the cobalt particle size effects in Fischer–Tropsch catalysis. J. Am. Chem. Soc. 131, 7197–7203 (2009).

  26. 26.

    Iablokov, V. et al. Size-controlled model Co nanoparticle catalysts for CO2 hydrogenation: synthesis, characterization, and catalytic reactions. Nano Lett. 12, 3091–3096 (2012).

  27. 27.

    Heine, C., Lechner, B. A. J., Bluhm, H. & Salmeron, M. Recycling of CO2: probing the chemical state of the Ni(111) surface during the methanation reaction with ambient-pressure X-ray photoelectron spectroscopy. J. Am. Chem. Soc. 138, 13246–13252 (2016).

  28. 28.

    Czekaj, I., Loviat, F., Raimondi, F., Biollaz, S. & Wokaun, A. Characterization of surface processes at the Ni-based catalyst during the methanation of biomass-derived synthesis gas: X-ray photoelectron spectroscopy (XPS). Appl. Catal. A 329, 68–78 (2007).

  29. 29.

    Marwood, M., Doepper, R. & Renken, A. In-situ surface and gas phase analysis for kinetic studies under transient conditions. The catalytic hydrogenation of CO2. Appl. Catal. A 151, 223–246 (1997).

  30. 30.

    Tao, F. et al. Reaction-driven restructuring of Rh-Pd and Pt-Pd core-shell nanoparticles. Science 322, 932–934 (2008).

  31. 31.

    Tao, F. et al. Break-up of stepped platinum catalyst surfaces by high CO coverage. Science 327, 850–853 (2010).

  32. 32.

    Miao, D. et al. Water-gas shift reaction over platinum/strontium apatite catalysts. Appl. Catal. B 202, 587–596 (2017).

  33. 33.

    Lamberti, C., Zecchina, A., Groppo, E. & Bordiga, S. Probing the surfaces of heterogeneous catalysts by in situ IR spectroscopy. Chem. Soc. Rev. 12, 4951–5001 (2010).

  34. 34.

    Yardimci, D., Serna, P. & Gates, B. C. Surface-mediated synthesis of dimeric rhodium catalysts on MgO: Tracking changes in the nuclearity and ligand environment of the catalytically active sites by X-ray absorption and infrared spectroscopies. Chem. Eur. J. 19, 1235–1245 (2013).

  35. 35.

    Kalz, K. F. et al. Future challenges in heterogeneous catalysis: understanding catalysts under dynamic reaction conditions. ChemCatChem 9, 17–29 (2017).

  36. 36.

    Camputano, J. C. & Greenler, R. G. The adsorption sites of CO on Ni(111) as determined by infrared reflection-absorption spectroscopy. Surf. Sci. 83, 301–312 (1979).

  37. 37.

    Trenary, M., Uram, K. J. & Yates, J. T. An infrared reflection-absorption study of CO chemisorbed on clean and sulfided Ni(111)—evidence for local surface interactions. Surf. Sci. 157, 512–538 (1985).

  38. 38.

    Layman, K. A. & Bussell, M. E. Infrared spectroscopic investigation of CO adsorption on silica-supported nickel phosphide catalysts. J. Phys. Chem. B 108, 10930–10941 (2004).

  39. 39.

    Courtois, M. & Teichner, S. J. Infrared studies of CO, O2 and CO2 gases and their interaction products, chemically adsorbed on nickel oxide. J. Catal. 135, 121–135 (1962).

  40. 40.

    Vesselli, E., Schweicher, J., Bundhoo, A., Frennet, A. & Kruse, N. Catalytic CO2 hydrogenation on nickel: novel insight by chemical transient kinetics. J. Phys. Chem. C. 115, 1255–1260 (2011).

  41. 41.

    van Bokhoven, J. A. & Lamberti, C. X-Ray Absorption and X-Ray Emission Spectroscopy: Theory and Applications (John Wiley & Sons: New York, NY, 2016).

  42. 42.

    Bordiga, S., Groppo, E., Agostini, G., Van Bokhoven, J. A. & Lamberti, C. Reactivity of surface species in heterogeneous catalysts probed by in situ X-ray absorption techniques. Chem. Rev. 113, 1736–1850 (2013).

  43. 43.

    Van Helden, P., Ciobica, I. M. & Coetzer, R. L. J. The size-dependent site composition of FCC cobalt nanocrystals. Catal. Today 261, 48–59 (2016).

  44. 44.

    Enger, B. C. & Holmen, A. Nickel and Fischer-Tropsch synthesis. Catal. Rev. Sci. Eng. 54, 437–488 (2012).

  45. 45.

    Munnik, P., Velthoen, M. E. Z., de Jongh, P. E., De Jong, K. P. & Gommes, C. J. Nanoparticle growth in supported nickel catalysts during methanation reaction-larger is better. Angew. Chem. Int. Ed. 53, 9493–9497 (2014).

  46. 46.

    Ermakova, M. A. & Ermakov, D. Y. High-loaded nickel-silica catalysts for hydrogenation, prepared by sol-gel route: structure and catalytic behavior. Appl. Catal. A 245, 277–288 (2003).

  47. 47.

    De Jong, K. P. in Synthesis of Solid Catalysts (ed. De Jong, K. P.) 111–134 (Wiley-VCH Verlag, Weinheim, 2009).

  48. 48.

    Lok, M. in Synthesis of Solid Catalysts (ed. De Jong, K. P.) 135–151 (Wiley-VCH Verlag, Weinheim, 2009)..

  49. 49.

    Liu, Y. et al. TXM-Wizard: A program for advanced data collection and evaluation in full-field transmission X-ray microscopy. J. Synchrotron. Radiat. 19, 281–287 (2012).

  50. 50.

    Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron. Radiat. 12, 537–541 (2005).

  51. 51.

    Frenkel, A. I., Hills, C. W. & Nuzzo, R. G. A view from the inside: complexity in the atomic scale ordering of supported metal nanoparticles. J. Phys. Chem. B 105, 12689–12703 (2001).

  52. 52.

    Chukin, G. D. & Malevich, V. I. Infrared spectra of silica. Zhurnal Prikl. Spektrosk. 26, 223–229 (1977).

  53. 53.

    Socrates, G. Infrared and Raman Characteristic Group Frequencies (Wiley, Chichester, 2001).

  54. 54.

    Erley, W., Wagner, H. & Ibach, H. Adsorption sites and long range order —vibrational spectra for CO on Ni(111). Surf. Sci. 80, 612–619 (1979).

  55. 55.

    Erley, W. & Wagner, H. Thermal decomposition of CO on a stepped Ni surface. Surf. Sci. 74, 333–341 (1978).

  56. 56.

    Chumakova, A. V. et al. Periodic order and defects in Ni-based inverse opal-like crystals on the mesoscopic and atomic scale. Phys. Rev. B 90, 1–9 (2014).

Download references


The authors thank NWO and BASF for a TA-CHIPP grant. B.M.W. also thanks NWO for a Gravitation programme (Netherlands Center for Multiscale Catalytic Energy Conversion (MCEC)). Furthermore, S. Parker and J. Palle (Utrecht University, UU) are acknowledged for their contributions in measuring FT-IR spectra and activity data. F. Soulimani (UU) and P. de Peinder (UU) are acknowledged for discussions regarding FT-IR data. J. Geus (UU) is also acknowledged for fruitful discussions. A. van der Eerden, M. Filez and H. Schaink, all from UU, are acknowledged for (technical) support in measuring XAS. O. Sofanova (PSI) is thanked for reading the manuscript carefully prior to submission.

Author information

E.G. made the set of catalyst samples. C.V., F.M. and B.M.W. conceived and designed the operando experiments. C.V. performed the operando spectroscopic experiments. FT-IR data analysis was performed by C.V. with input from B.M.W., while quick XAS data analysis was performed by F.M. and C.V. L.L. and C.J.K performed and interpreted HAADF–STEM measurements; G.K., E.G. and P.H.B. performed and interpreted H2 chemisorption measurements and prepared reference XAS samples. M.N. aided in the set-up, and provided support with the operando quick XAS measurements. C.V., F.M. and B.M.W. wrote the paper. All authors discussed the results and commented on the manuscript.

Competing interests

The authors declare no competing financial interests.

Correspondence to Bert M. Weckhuysen.

Supplementary information

Supplementary Information

Supplementary Information, Supplementary Figures 1–29, Supplementary Tables 1–4, Supplementary References

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Further reading

Fig. 1: Mechanisms of catalytic CO2 hydrogenation.
Fig. 2: Particle size–activity relationships.
Fig. 3: Combined operando FT-IR and catalyst activity measurements.
Fig. 4: Q-XAS of five Ni/SiO2 catalysts with different mean Ni particle sizes.