Solvent-determined mechanistic pathways in zeolite-H-BEA-catalysed phenol alkylation

Abstract

Alkylation of phenolics is of great importance in synthetic chemistry and the valorization of lignocellulosic-biomass-derived streams. Here, we unravel how alkylating reactants and solvents significantly alter the reaction pathways of zeolite-catalysed alkylation of phenol in the liquid phase. The carbenium ion formed from the dehydration of cyclohexanol or from the adsorption and protonation of cyclohexene acts as the electrophile, inducing carbon–carbon bond formation. Cyclohexanol at Brønsted acid sites (BAS) forms hydrogen-bonded monomers and protonated dimers in apolar solvents. The dimer appears to generate a much lower concentration of carbenium ions compared with the monomer. Higher alkylation rates in apolar solvents than in water are caused by the energetically more-favourable carbenium ion formation from either alcohol or olefin on non-hydrated zeolite BAS than on hydronium ions produced by BAS in pores filled with water.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Carbon-based concentration–time profiles of phenol alkylation on H-BEA-150 in decalin.
Fig. 2: Measured turnover frequencies (TOFs) for olefin formation from cyclohexanol dehydration.
Fig. 3: Reaction pathways proposed on the basis of in situ 13C NMR measurements of cyclohexanol dehydration.
Fig. 4: Measured TOFs for the initial conversion of phenol as a function of cyclohexanol concentration.
Fig. 5: Conversion of phenol and cyclohexanol as a function of time in the aqueous-phase phenol–cyclohexanol alkylation reaction on H-BEA-150.
Fig. 6: Influence of alkylating reactants and solvents on activation barriers for electrophile formation during liquid-phase phenol alkylation on H-BEA-150.

References

  1. 1.

    Olah, G. A. Friedel-Crafts Chemistry (Wiley, 1973).

  2. 2.

    Weissermel, K. & Arpe, H.-J. in Industrial Organic Chemistry 3rd edn, 358 (VCH, 1997).

  3. 3.

    Price, C. C. Organic Reactions (John Wiley & Sons, 2004).

  4. 4.

    Ma, Q. et al. Alkylation of phenol: a mechanistic view. J. Phys. Chem. A 110, 2246–2252 (2006).

    CAS  Article  Google Scholar 

  5. 5.

    Craciun, I., Reyniers, M.-F. & Marin, G. B. Liquid-phase alkylation of benzene with octenes over Y zeolites: kinetic modeling including acidity descriptors. J. Catal. 294, 136–150 2012).

    CAS  Article  Google Scholar 

  6. 6.

    Hansen, N., Brüggemann, T., Bell, A. T. & Keil, F. J. Theoretical investigation of benzene alkylation with ethene over H-ZSM-5. J. Phys. Chem. C 112, 15402–15411 (2008).

    CAS  Article  Google Scholar 

  7. 7.

    Wilson, K. & Clark, J. H. Solid acids and their use as environmentally friendly catalysts in organic synthesis. Pure. Appl. Chem. 72, 1313–1320 (2000).

    CAS  Article  Google Scholar 

  8. 8.

    Resasco, D. E., Wang, B. & Crossley, S. Zeolite-catalyzed C–C bond forming reactions for biomass conversion to fuels and chemicals. Catal. Sci. Technol. 6, 2543–2559 (2016).

    CAS  Article  Google Scholar 

  9. 9.

    Corma, A. Organic reactions catalyzed over solid acids. Catal. Today 38, 257–308 (1997).

    CAS  Article  Google Scholar 

  10. 10.

    Dwyer, F. G., Lewis, P. J. & Schneider, F. H. Efficient, nonpolluting ethylbenzene process. Chem. Eng. 83, 90–91 (1976).

    CAS  Google Scholar 

  11. 11.

    Corma, A. Inorganic solid acids and their use in acid-catalyzed hydrocarbon reactions. Chem. Rev. 95, 559–614 (1995).

    CAS  Article  Google Scholar 

  12. 12.

    Zhao, C., Camaioni, D. M. & Lercher, J. A. Selective catalytic hydroalkylation and deoxygenation of substituted phenols to bicycloalkanes. J. Catal. 288, 92–103 (2012).

    CAS  Article  Google Scholar 

  13. 13.

    Liu, Y. et al. Enhancing the catalytic activity of hydronium ions through constrained environments. Nat. Commun. 8, 14113 (2017).

    Article  Google Scholar 

  14. 14.

    Anand, R., Gore, K. U. & Rao, B. S. Alkylation of phenol with cyclohexanol and cyclohexene using HY and modified HY zeolites. Catal. Lett. 81, 33–41 (2002).

    CAS  Article  Google Scholar 

  15. 15.

    Anand, R., Daniel, T., Lahoti, R. J., Srinivasan, K. V. & Rao, B. S. Selective alkylation of phenol with cyclohexanol over large-pore zeolites. Catal. Lett. 81, 241–246 (2002).

    CAS  Article  Google Scholar 

  16. 16.

    Roberts, V. M. et al. Towards quantitative catalytic lignin depolymerization. Chem. Eur. J. 17, 5939–5948 (2011).

    CAS  Article  Google Scholar 

  17. 17.

    Zhao, C. & Lercher, J. A. Upgrading pyrolysis oil over Ni/HZSM-5 by cascade reactions. Angew. Chem. Int. Ed. 51, 5935–5940 (2012).

    CAS  Article  Google Scholar 

  18. 18.

    Huber, G. W. & Corma, A. Synergies between bio- and oil refineries for the production of fuels from biomass. Angew. Chem. Int. Ed. 46, 7184–7201 (2007).

    CAS  Article  Google Scholar 

  19. 19.

    Stöcker, M. Biofuels and biomass-to-liquid fuels in the biorefinery: catalytic conversion of lignocellulosic biomass using porous materials. Angew. Chem. Int. Ed. 47, 9200–9211 (2008).

    Article  Google Scholar 

  20. 20.

    González-Borja, M. Á. & Resasco, D. E. Reaction pathways in the liquid phase alkylation of biomass-derived phenolic compounds. AIChE. J. 61, 598–609 (2014).

    Article  Google Scholar 

  21. 21.

    Pierantozzi, R. & Nordquist, A. F. Selective O-alkylation of phenol with methanol. Appl. Catal. 21, 263–271 (1986).

    CAS  Article  Google Scholar 

  22. 22.

    Chaudhuri, B. & Sharma, M. M. Alkylation of phenol with α-methylstyrene, propylene, butenes, isoamylene, 1-octene, and diisobutylene: heterogeneous vs. homogeneous catalysts. Ind. Eng. Chem. Res. 30, 227–231 (1991).

    CAS  Article  Google Scholar 

  23. 23.

    Samolada, M. Selective O-alkylation of phenol with methanol over sulfates supported on γ-Al2O3. J. Catal. 152, 52–62 (1995).

    CAS  Article  Google Scholar 

  24. 24.

    Gagea, B. C. et al. Alkylation of phenols and naphthols on silica-immobilized triflate derivatives. Catal. Lett. 91, 141–144 (2003).

    CAS  Article  Google Scholar 

  25. 25.

    Karthik, M. et al. Synthesis, characterization and catalytic performance of Mg and Co substituted mesoporous aluminophosphates. Micro. Mesopor. Mater. 70, 15–25 (2004).

    CAS  Article  Google Scholar 

  26. 26.

    Yadav, G. D. & Kumar, P. Alkylation of phenol with cyclohexene over solid acids: Insight in selectivity of O- versus C-alkylation. Appl. Catal. A 286, 61–70 (2005).

    CAS  Article  Google Scholar 

  27. 27.

    de Klerk, A. & Nel, R. J. J. Phenol alkylation with 1-octene on solid acid catalysts. Ind. Eng. Chem. Res. 46, 7066–7072 (2007).

    Article  Google Scholar 

  28. 28.

    Sad, M. E., Padró, C. L. & Apesteguía, C. R. Synthesis of cresols by alkylation of phenol with methanol on solid acids. Catal. Today 133–135, 720–728 (2008).

    Article  Google Scholar 

  29. 29.

    Modrogan, E., Valkenberg, M. & Hoelderich, W. Phenol alkylation with isobutene—influence of heterogeneous Lewis and/or Brønsted acid sites. J. Catal. 261, 177–187 (2009).

    CAS  Article  Google Scholar 

  30. 30.

    Zhao, Z. et al. Mechanism of phenol alkylation in zeolite H-BEA using in situ solid-state NMR spectroscopy. J. Am. Chem. Soc. 139, 9178–9185 (2017).

    CAS  Article  Google Scholar 

  31. 31.

    Alul, H. R. Solvent effects in the alkylation of benzene with 1-dodecene and trans-6-dodecene in the presence of aluminum chloride. J. Org. Chem. 33, 1522–1527 (1968).

    CAS  Article  Google Scholar 

  32. 32.

    Espeel, P. H. J., Vercruysse, K. A., Debaerdemaker, M. & Jacobs, P. A. Solvent effects in liquid phase Friedel-crafts alkylation over zeolites: control of reaction rate and selectivity by adsorption. Stud. Surf. Sci. Catal. 84, 1457–1464 (1994).

    CAS  Article  Google Scholar 

  33. 33.

    Ronchin, L., Vavasori, A. & Toniolo, L. Acid catalyzed alkylation of phenols with cyclohexene: comparison between homogeneous and heterogeneous catalysis, influence of cyclohexyl phenyl ether equilibrium and of the substituent on reaction rate and selectivity. J. Mol. Catal. A 355, 134–141 (2012).

    CAS  Article  Google Scholar 

  34. 34.

    Chiang, H. & Bhan, A. Catalytic consequences of hydroxyl group location on the rate and mechanism of parallel dehydration reactions of ethanol over acidic zeolites. J. Catal. 271, 251–261 (2010).

    CAS  Article  Google Scholar 

  35. 35.

    Zhi, Y. et al. Dehydration pathways of 1-propanol on HZSM-5 in the presence and absence of water. J. Am. Chem. Soc. 137, 15781–15794 (2015).

    CAS  Article  Google Scholar 

  36. 36.

    Knaeble, W. & Iglesia, E. Kinetic and theoretical insights into the mechanism of alkanol dehydration on solid brønsted acid catalysts. J. Phys. Chem. C. 120, 3371–3389 (2016).

    CAS  Article  Google Scholar 

  37. 37.

    Lee, K. Y. et al. Catalysis by heteropoly compounds. 20. An NMR study of ethanol dehydration in the pseudoliquid phase of 12-tungstophosphoric acid. J. Am. Chem. Soc. 114, 2836–2842 (1992).

    CAS  Article  Google Scholar 

  38. 38.

    Macht, J., Janik, M. J., Neurock, M. & Iglesia, E. Catalytic consequences of composition in polyoxometalate clusters with keggin structure. Angew. Chem. Int. Ed. 46, 7864–7868 (2007).

    CAS  Article  Google Scholar 

  39. 39.

    Macht, J., Janik, M. J., Neurock, M. & Iglesia, E. Mechanistic consequences of composition in acid catalysis by polyoxometalate keggin clusters. J. Am. Chem. Soc. 130, 10369–10379 (2008).

    CAS  Article  Google Scholar 

  40. 40.

    John, M., Alexopoulos, K., Reyniers, M.-F. & Marin, G. B. Reaction path analysis for 1-butanol dehydration in H-ZSM-5 zeolite: ab initio and microkinetic modeling. J. Catal. 330, 28–45 (2015).

    CAS  Article  Google Scholar 

  41. 41.

    Vjunov, A. et al. Following solid-acid-catalyzed reactions by MAS NMR spectroscopy in liquid phase-zeolite-catalyzed conversion of cyclohexanol in water. Angew. Chem. Int. Ed. 53, 479–482 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

Y.L. gratefully acknowledges support from the Graduate School (Faculty Graduate Center of Chemistry) of the Technische Universität München. The authors thank G. L. Haller (Yale University) for his critical reading of the manuscript. The authors also thank Z. Zhao (PNNL) for performing the NMR measurements. H.S., D.M.C., J.H. and J.A.L. acknowledge support from the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multi-programme menational laboratory operated for DOE by Battelle.

Author information

Affiliations

Authors

Contributions

Y.L. carried out the reactions and performed the characterizations for selected materials; J.H. provided data on the in situ 13C NMR measurements and discussed the NMR data; Y.L. and H.S. analysed the reaction data. The manuscript was written with contributions from all authors.

Corresponding authors

Correspondence to Hui Shi or Johannes A. Lercher.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–35, Supplementary Tables 1–7, Supplementary References.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Baráth, E., Shi, H. et al. Solvent-determined mechanistic pathways in zeolite-H-BEA-catalysed phenol alkylation. Nat Catal 1, 141–147 (2018). https://doi.org/10.1038/s41929-017-0015-z

Download citation

Further reading

Search

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing