Article | Published:

Metal ion cycling of Cu foil for selective C–C coupling in electrochemical CO2 reduction

Nature Catalysisvolume 1pages111119 (2018) | Download Citation

Abstract

Electrocatalytic CO2 reduction to higher-value hydrocarbons beyond C1 products is desirable for applications in energy storage, transportation and the chemical industry. Cu catalysts have shown the potential to catalyse C–C coupling for C2+ products, but still suffer from low selectivity in water. Here, we use density functional theory to determine the energetics of the initial C–C coupling steps on different Cu facets in CO2 reduction, and suggest that the Cu(100) and stepped (211) facets favour C2+ product formation over Cu(111). To demonstrate this, we report the tuning of facet exposure on Cu foil through the metal ion battery cycling method. Compared with the polished Cu foil, our 100-cycled Cu nanocube catalyst with exposed (100) facets presents a sixfold improvement in C2+ to C1 product ratio, with a highest C2+ Faradaic efficiency of over 60% and H2 below 20%, and a corresponding C2+ current of more than 40 mA cm–2.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Obama, B. The irreversible momentum of clean energy. Science 355, 126–129 (2017).

  2. 2.

    Chu, S., Cui, Y. & Liu, N. The path towards sustainable energy. Nat. Mater. 16, 16–22 (2017).

  3. 3.

    Lewis, N. S. Research opportunities to advance solar energy utilization. Science 351, aad1920 (2016).

  4. 4.

    Liu, C., Colón, B. C., Ziesack, M., Silver, P. A. & Nocera, D. G. Water splitting–biosynthetic system with CO2 reduction efficiencies exceeding photosynthesis. Science 352, 1210–1213 (2016).

  5. 5.

    Cook, T. R. et al. Solar energy supply and storage for the legacy and nonlegacy worlds. Chem. Rev. 110, 6474–6502 (2010).

  6. 6.

    Concepcion, J. J., House, R. L., Papanikolas, J. M. & Meyer, T. J. Chemical approaches to artificial photosynthesis. Proc. Natl Acad. Sci. USA 109, 15560–15564 (2012).

  7. 7.

    Lewis, N. S. & Nocera, D. G. Powering the planet: chemical challenges in solar energy utilization. Proc. Natl Acad. Sci. USA 103, 15729–15735 (2006).

  8. 8.

    Sakimoto, K. K., Wong, A. B. & Yang, P. Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production. Science 351, 74–77 (2016).

  9. 9.

    Rosen, B. A. et al. Ionic liquid-mediated selective conversion of CO2 to CO at low overpotentials. Science 334, 643–644 (2011).

  10. 10.

    Hori, Y. in Modern Aspects of Electrochemistry Modern Aspects of Electrochemistry (eds Vayenas, C. G., White, R. E. & Gamboa-Aldeco, M. E.) 89–189 (Springer, New York, 2008).

  11. 11.

    Zhu, D. D., Liu, J. L. & Qiao, S. Z. Recent advances in inorganic heterogeneous electrocatalysts for reduction of carbon dioxide. Adv. Mater. 28, 3423–3452 (2016).

  12. 12.

    Hori, Y., Takahashi, I., Koga, O. & Hoshi, N. Selective formation of C2 compounds from electrochemical reduction of CO2 at a series of copper single crystal electrodes. J. Phys. Chem. B 106, 15–17 (2002).

  13. 13.

    Jiang, K. et al. Transition-metal single atoms in a graphene shell as active centers for highly efficient artificial photosynthesis. Chem https://doi.org/10.1016/j.chempr.2017.09.014 (2017).

  14. 14.

    Liu, M. et al. Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration. Nature 537, 382–386 (2016).

  15. 15.

    Saberi Safaei, T. et al. High-density nanosharp microstructures enable efficient CO2 electroreduction. Nano Lett. 16, 7224–7228 (2016).

  16. 16.

    Gao, S. et al. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel. Nature 529, 68–71 (2016).

  17. 17.

    Chen, Y., Li, C. W. & Kanan, M. W. Aqueous CO2 reduction at very low overpotential on oxide-derived Au nanoparticles. J. Am. Chem. Soc. 134, 19969–19972 (2012).

  18. 18.

    Lin, S. et al. Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water. Science 349, 1208–1213 (2015).

  19. 19.

    Kornienko, N. et al. Metal–organic frameworks for electrocatalytic reduction of carbon dioxide. J. Am. Chem. Soc. 137, 14129–14135 (2015).

  20. 20.

    Zhang, S. et al. Polyethylenimine-enhanced electrocatalytic reduction of CO2 to formate at nitrogen-doped carbon nanomaterials. J. Am. Chem. Soc. 136, 7845–7848 (2014).

  21. 21.

    Zhang, S., Kang, P. & Meyer, T. J. Nanostructured tin catalysts for selective electrochemical reduction of carbon dioxide to formate. J. Am. Chem. Soc. 136, 1734–1737 (2014).

  22. 22.

    Lei, F. et al. Metallic tin quantum sheets confined in graphene toward high-efficiency carbon dioxide electroreduction. Nat. Commun. 7, 12697 (2016).

  23. 23.

    Sharma, P. P. et al. Nitrogen-doped carbon nanotube arrays for high-efficiency electrochemical reduction of CO2: on the understanding of defects, defect density, and selectivity. Angew. Chem. Int. Ed. 127, 13905–13909 (2015).

  24. 24.

    Zhang, X. et al. Highly selective and active CO2 reduction electrocatalysts based on cobalt phthalocyanine/carbon nanotube hybrid structures. Nat. Commun. 8, 14675 (2017).

  25. 25.

    Verma, S., Kim, B., Jhong, H.-R. M., Ma, S. & Kenis, P. J. A. A gross-margin model for defining technoeconomic benchmarks in the electroreduction of CO2. ChemSusChem 9, 1972–1979 (2016).

  26. 26.

    Liu, X. et al. Understanding trends in CO2 reduction on transition metals. Nat. Commun. 8, 15438 (2017).

  27. 27.

    Kuhl, K. P., Cave, E. R., Abram, D. N. & Jaramillo, T. F. New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ. Sci. 5, 7050–7059 (2012).

  28. 28.

    Hori, Y., Takahashi, I., Koga, O. & Hoshi, N. Electrochemical reduction of carbon dioxide at various series of copper single crystal electrodes. J. Mol. Catal. A Chem. 199, 39–47 (2003).

  29. 29.

    Schouten, K. J. P., Qin, Z., Gallent, E. P. & Koper, M. T. M. Two pathways for the formation of ethylene in CO reduction on single-crystal copper electrodes. J. Am. Chem. Soc. 134, 9864–9867 (2012).

  30. 30.

    Calle-Vallejo, F. & Koper, M. T. M. Theoretical considerations on the electroreduction of CO to C2 species on Cu(100) electrodes. Angew. Chem. Int. Ed. 52, 7282–7285 (2013).

  31. 31.

    Xie, M. S. et al. Amino acid modified copper electrodes for the enhanced selective electroreduction of carbon dioxide towards hydrocarbons. Energy Environ. Sci. 9, 1687–1695 (2016).

  32. 32.

    Li, C. W. & Kanan, M. W. CO2 reduction at low overpotential on cu electrodes resulting from the reduction of thick Cu2O films. J. Am. Chem. Soc. 134, 7231–7234 (2012).

  33. 33.

    Li, C. W., Ciston, J. & Kanan, M. W. Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper. Nature 508, 504–507 (2014).

  34. 34.

    Ma, M., Djanashvili, K. & Smith, W. A. Controllable hydrocarbon formation from the electrochemical reduction of CO2 over Cu nanowire arrays. Angew. Chem. Int. Ed. 128, 6792–6796 (2016).

  35. 35.

    Mistry, H. et al. Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene. Nat. Commun. 7, 12123 (2016).

  36. 36.

    Huang, Y., Handoko, A. D., Hirunsit, P. & Yeo, B. S. Electrochemical reduction of CO2 using copper single-crystal surfaces: effects of CO* coverage on the selective formation of ethylene. ACS Catal. 7, 1749–1756 (2017).

  37. 37.

    Roberts, F. S., Kuhl, K. P. & Nilsson, A. High selectivity for ethylene from carbon dioxide reduction over copper nanocube electrocatalysts. Angew. Chem. Int. Ed. 54, 5179–5182 (2015).

  38. 38.

    Roberts, F. S., Kuhl, K. P. & Nilsson, A. Electroreduction of carbon monoxide over a copper nanocube catalyst: surface structure and pH dependence on selectivity. ChemCatChem 8, 1119–1124 (2016).

  39. 39.

    Loiudice, A. et al. Tailoring copper nanocrystals towards C2 products in electrochemical CO2 reduction. Angew. Chem. Int. Ed. 55, 5789–5792 (2016).

  40. 40.

    Goodpaster, J. D., Bell, A. T. & Head-Gordon, M. Identification of possible pathways for C–C bond formation during electrochemical reduction of CO2: new theoretical insights from an improved electrochemical model. J. Phys. Chem. Lett. 7, 1471–1477 (2016).

  41. 41.

    Xiao, H., Cheng, T., Goddard, W. A. & Sundararaman, R. Mechanistic explanation of the pH dependence and onset potentials for hydrocarbon products from electrochemical reduction of CO on Cu (111). J. Am. Chem. Soc. 138, 483–486 (2016).

  42. 42.

    Xiao, H., Cheng, T. & Goddard, W. A. Atomistic mechanisms underlying selectivities in C1 and C2 products from electrochemical reduction of CO on Cu(111). J. Am. Chem. Soc. 139, 130–136 (2017).

  43. 43.

    Kortlever, R., Shen, J., Schouten, K. J. P., Calle-Vallejo, F. & Koper, M. T. M. Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide. J. Phys. Chem. Lett. 6, 4073–4082 (2015).

  44. 44.

    Chen, L. D., Urushihara, M., Chan, K. & Nørskov, J. Electric field effects in electrochemical CO2 reduction. ACS Catal. 6, 7133–7139 (2016).

  45. 45.

    Montoya, J. H., Shi, C., Chan, K. & Norskov, J. K. Theoretical insights into a CO dimerization mechanism in CO2 electroreduction. J. Phys. Chem. Lett. 6, 2032–2037 (2015).

  46. 46.

    Hinnemann, B. et al. Biomimetic hydrogen evolution:  MoS2 nanoparticles as catalyst for hydrogen evolution. J. Am. Chem. Soc. 127, 5308–5309 (2005).

  47. 47.

    Kibsgaard, J. et al. Designing an improved transition metal phosphide catalyst for hydrogen evolution using experimental and theoretical trends. Energy Environ. Sci. 8, 3022–3029 (2015).

  48. 48.

    Zheng, Y., Jiao, Y., Jaroniec, M. & Qiao, S. Z. Advancing the electrochemistry of the hydrogen-evolution reaction through combining experiment and theory. Angew. Chem. Int. Ed. 54, 52–65 (2015).

  49. 49.

    Greeley, J., Jaramillo, T. F., Bonde, J., Chorkendorff, I. & Norskov, J. K. Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat. Mater. 5, 909–913 (2006).

  50. 50.

    Zhang, J., Zhao, Z., Xia, Z. & Dai, L. A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Nat. Nanotech. 10, 444–452 (2015).

  51. 51.

    Seitz, L. C. et al. A highly active and stable IrO x /SrIrO3 catalyst for the oxygen evolution reaction. Science 353, 1011–1014 (2016).

  52. 52.

    Wang, H. et al. Direct and continuous strain control of catalysts with tunable battery electrode materials. Science 354, 1031–1036 (2016).

  53. 53.

    Chan, K. & Nørskov, J. K. Electrochemical barriers made simple. J. Phys. Chem. Lett. 6, 2663–2668 (2015).

  54. 54.

    Schnur, S. & Groß, A. Challenges in the first-principles description of reactions in electrocatalysis. Catal. Today 165, 129–137 (2011).

  55. 55.

    Hormann, N. G. et al. Some challenges in the first-principles modeling of structures and processes in electrochemical energy storage and transfer. J. Power Sources 275, 531–538 (2015).

  56. 56.

    Calle-Vallejo, F. & Koper, M. T. M. First-principles computational electrochemistry: achievements and challenges. Electrochim. Acta 84, 3–11 (2012).

  57. 57.

    Sandberg, R., Montoya, J. H., Chan, K. & Norskov, J. CO–CO coupling on Cu facets: strain and coverage effects. Surf. Sci. 654, 56–62 (2016).

  58. 58.

    Bertheussen, E. et al. Acetaldehyde as an intermediate in the electroreduction of carbon monoxide to ethanol on oxide-derived copper. Angew. Chem. Int. Ed. 55, 1450–1454 (2016).

  59. 59.

    Schouten, K. J. P., Kwon, Y., Ham, C. J. Mvd, Qin, Z. & Koper, M. T. M. A new mechanism for the selectivity to C1 and C2 species in the electrochemical reduction of carbon dioxide on copper electrodes. Chem. Sci. 2, 1902–1909 (2011).

  60. 60.

    Resasco, J. et al. Promoter effects of alkali metal cations on the electrochemical reduction of carbon dioxide. J. Am. Chem. Soc. 139, 11277–11287 (2017).

  61. 61.

    Norskov, J. K., Studt, F., Abild-Pedersen, F. & Bligaard, T. Fundamental Concepts in Heterogeneous Catalysis (Wiley, Hoboken, NJ, 2014).

  62. 62.

    Ikemiya, N., Kubo, T. & Hara, S. In situ AFM observations of oxide film formation o n Cu(111) and Cu (100) surfaces under aqueous alkaline solutions. Surf. Sci. 323, 81–90 (1995).

  63. 63.

    Zhou, G. & Yang, J. C. Formation of quasi-one-dimensional Cu2O structures by in situ oxidation of Cu(100). Phys. Rev. Lett. 89, 106101 (2002).

  64. 64.

    Shang, Y. & Guo, L. Facet-controlled synthetic strategy of Cu2O-based crystals for catalysis and sensing. Adv. Sci. 2, 1500140 (2015).

  65. 65.

    Huang, W.-C., Lyu, L.-M., Yang, Y.-C. & Huang, M. H. Synthesis of Cu2O nanocrystals from cubic to rhombic dodecahedral structures and their comparative photocatalytic activity. J. Am. Chem. Soc. 134, 1261–1267 (2012).

  66. 66.

    Oba, F. et al. Epitaxial growth of cuprous oxide electrodeposited onto semiconductor and metal substrates. J. Am. Chem. Soc. 88, 253–270 (2005).

  67. 67.

    Manthiram, K., Beberwyck, B. J. & Alivisatos, A. P. Enhanced electrochemical methanation of carbon dioxide with a dispersible nanoscale copper catalyst. J. Am. Chem. Soc. 136, 13319–13325 (2014).

  68. 68.

    Hori, Y., Takahashi, R., Yoshinami, Y. & Murata, A. Electrochemical reduction of CO at a copper electrode. J. Phys. Chem. B 101, 7075–7081 (1997).

  69. 69.

    Kas, R., Kortlever, R., Yılmaz, H., Koper, M. T. M. & Mul, G. Manipulating the hydrocarbon selectivity of copper nanoparticles in CO2 electroreduction by process conditions. ChemElectroChem 2, 354–358 (2015).

  70. 70.

    Henkelman, G., Uberuaga, B. P. & Jonsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).

  71. 71.

    Wellendorff, J. et al. Density functionals for surface science: exchange-correlation model development with Bayesian error estimation. Phys. Rev. B 85, 235149 (2012).

  72. 72.

    Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).

  73. 73.

    Bahn, S. R. & Jacobsen, K. W. An object-oriented scripting interface to a legacy electronic structure code. Comput. Sci. Eng. 4, 56–66 (2002).

  74. 74.

    Cramer, C. J. Essentials of Computational Chemistry (Wiley, Chichester, 2004).

  75. 75.

    Ogasawara, H. et al. Structure and bonding of water on Pt(111). Phys. Rev. Lett. 89, 276102 (2002).

  76. 76.

    Goedecker, S. Minima hopping: an efficient search method for the global minimum of the potential energy surface of complex molecular systems. J. Chem. Phys. 120, 9911–9917 (2004).

  77. 77.

    Rossmeisl, J., Skulason, E., Bjorketun, M. E., Tripkovic, V. & Norskov, J. K. Modeling the electrified solid–liquid interface. Chem. Phys. Lett. 466, 68–71 (2008).

  78. 78.

    Bengtsson, L. Dipole correction for surface supercell calculations. Phys. Rev. B 59, 12301–12304 (1999).

  79. 79.

    Norskov, J. K. et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004).

  80. 80.

    Abild-Pedersen, F. & Andersson, M. P. CO adsorption energies on metals with correction for high coordination adsorption sites: a density functional study. Surf. Sci. 601, 1747–1753 (2007).

  81. 81.

    Mason, S. E., Grinberg, I. & Rappe, A. M. First-principles extrapolation method for accurate CO adsorption energies on metal surfaces. Phys. Rev. B 69, 161401 (2004).

  82. 82.

    Chan, K. & Nørskov, J. K. Potential dependence of electrochemical barriers from ab initio calculations. J. Phys. Chem. Lett. 7, 1686–1690 (2016).

Download references

Acknowledgements

This work was supported by the Rowland Fellows Program at Rowland Institute, Harvard University. H.W. and K.J. acknowledge great support from C. M. Friend at Harvard University. This work was performed in part at the Center for Nanoscale Systems (CNS), a member of the National Nanotechnology Infrastructure Network (NNIN), which is supported by the National Science Foundation under NSF award no. ECS-0335765. CNS is part of Harvard University. Theoretical calculations were based upon work performed by the Joint Center for Artificial Photosynthesis, a DOE Energy Innovation Hub, supported through the Office of Science of the US Department of Energy under award no. DE-SC0004993. This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the US Department of Energy under contract no. DE-AC02-05CH11231.

Author information

Author notes

  1. Kun Jiang and Robert B. Sandberg contributed equally to this work.

Affiliations

  1. Rowland Institute, Harvard University, Cambridge, MA, USA

    • Kun Jiang
    •  & Haotian Wang
  2. SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, CA, USA

    • Robert B. Sandberg
    • , Xinyan Liu
    • , Jens K. Nørskov
    •  & Karen Chan
  3. Center for Nanoscale Systems, Harvard University, Cambridge, MA, USA

    • Austin J. Akey
    •  & David C. Bell
  4. Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA

    • David C. Bell
  5. SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, CA, USA

    • Jens K. Nørskov
    •  & Karen Chan

Authors

  1. Search for Kun Jiang in:

  2. Search for Robert B. Sandberg in:

  3. Search for Austin J. Akey in:

  4. Search for Xinyan Liu in:

  5. Search for David C. Bell in:

  6. Search for Jens K. Nørskov in:

  7. Search for Karen Chan in:

  8. Search for Haotian Wang in:

Contributions

H.W. designed the experiments of this project. K.C. designed the simulations of this project. K.J. and H.W. performed materials synthesis and catalysis measurements. K.J., A.J.A. and H.W. performed material characterizations. R.B.S., X.L. and K.C. performed simulations. H.W., K.J., K.C., R.B.S. and X.L. wrote the manuscript. K.J., R.B.S., A.J.A., X.L., D.C.B., J.K.N., K.C. and H.W. analysed the results.

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to Karen Chan or Haotian Wang.

Supplementary information

  1. Supplementary Information

    Supplementary Figures 1–25, Supplementary Tables 1–7, Supplementary References.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41929-017-0009-x

Further reading