Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Complete lignocellulose conversion with integrated catalyst recycling yielding valuable aromatics and fuels


Lignocellulose, the main component of agricultural and forestry waste, harbours tremendous potential as a renewable starting material for future biorefinery practices. However, this potential remains largely unexploited due to the lack of strategies that derive substantial value from its main constituents. Here, we present a catalytic strategy that is able to transform lignocellulose to a range of attractive products. At the centre of our approach is the flexible use of a non-precious metal catalyst in two distinct stages of a lignocellulose conversion process that enables integrated catalyst recycling through full conversion of all process residues. From the lignin, pharmaceutical and polymer building blocks are obtained. Notably, among these pathways are systematic chemo-catalytic methodologies to yield amines from lignin. The (hemi)cellulose-derived aliphatic alcohols are transformed to alkanes, achieving excellent total carbon utilization. This work will inspire the development of fully sustainable and economically viable biorefineries.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Comprehensive catalytic strategy for complete lignocellulose conversion, which embraces the inherent complexity of the starting material.
Fig. 2: Aromatic monomers from pine lignocellulose.
Fig. 3: Catalytic and control reactions for the conversion of pine lignocellulose.
Fig. 4: Complete conversion of various lignocelluloses to aromatic and aliphatic alcohols through the flexible use of Cu20-PMO under mild (Step 1) and supercritical conditions (Step 2).
Fig. 5: Catalytic methodology for the conversion of lignocellulose-derived alcohols to alkanes.
Fig. 6: Toward fully sustainable processes.
Fig. 7: Schematic representation of the overall catalytic approach and mass balances obtained with selected pine lignocellulose.
Fig. 8: Potential applications of compounds obtained from 1G.


  1. 1.

    Tuck, C. O., Perez, E., Horváth, I. T., Sheldon, R. A. & Poliakoff, M. Valorization of biomass: deriving more value from waste. Science 337, 695–699 (2012).

    CAS  Article  Google Scholar 

  2. 2.

    Christopher, L., Clark, J. H. & Kraus, G. A. Integrated Forest Biorefineries: Challenges and Opportunities (Royal Society of Chemistry, London, 2012).

    Google Scholar 

  3. 3.

    Zaheer, M. & Kempe, R. Catalytic hydrogenolysis of aryl ethers: a key step in lignin valorization to valuable chemicals. ACS Catal. 5, 1675–1684 (2015).

    CAS  Article  Google Scholar 

  4. 4.

    Galkin, M. V. & Samec, J. S. M. Lignin valorization through catalytic lignocellulose fractionation: a fundamental platform for the future biorefinery. ChemSusChem 9, 1544–1558 (2016).

    CAS  Article  Google Scholar 

  5. 5.

    Deuss, P. J. et al. Phenolic acetals from lignins of varying compositions via iron(III) triflate catalysed depolymerisation. Green Chem. 19, 2774–2782 (2017).

    CAS  Article  Google Scholar 

  6. 6.

    Zakzeski, J., Bruijnincx, P. C. A., Jongerius, A. L. & Weckhuysen, B. M. The catalytic valorization of lignin for the production of renewable chemicals. Chem. Rev. 110, 3552–3599 (2010).

    CAS  Article  Google Scholar 

  7. 7.

    Xu, C., Arneil, R., Arancon, D., Labidi, J. & Luque, R. Lignin depolymerisation strategies: towards valuable chemicals and fuels. Chem. Soc. Rev. 43, 7485–7500 (2014).

    CAS  Article  Google Scholar 

  8. 8.

    Deuss, P. J. & Barta, K. From models to lignin: transition metal catalysis for selective bond cleavage reactions. Coord. Chem. Rev. 306, 510–532 (2016).

    CAS  Article  Google Scholar 

  9. 9.

    Hanson, S. K. & Baker, R. T. Knocking on wood: base metal complexes as catalysts for selective oxidation of lignin models and extracts. Acc. Chem. Res. 48, 2037–2048 (2015).

    CAS  Article  Google Scholar 

  10. 10.

    Rahimi, A., Ulbrich, A., Coon, J. J. & Stahl, S. S. Formic-acid-induced depolymerization of oxidized lignin to aromatics. Nature 515, 249–252 (2014).

    CAS  Article  Google Scholar 

  11. 11.

    Shuai, L. et al. Formaldehyde stabilization facilitates lignin monomer production during biomass depolymerization. Science 354, 329–333 (2016).

    CAS  Article  Google Scholar 

  12. 12.

    Lancefield, C. S., Ojo, O. S., Tran, F. & Westwood, N. J. Isolation of functionalized phenolic monomers through selective oxidation and C-O bond cleavage of the β-O-4 linkages in lignin. Angew. Chem. Int. Ed. 54, 258–262 (2015).

    CAS  Article  Google Scholar 

  13. 13.

    Linger, J. G. et al. Lignin valorization through integrated biological funneling and chemical catalysis. Proc. Natl Acad. Sci. USA 111, 12013–12018 (2014).

    CAS  Article  Google Scholar 

  14. 14.

    Feghali, E., Carrot, G., Thuéry, P., Genre, C. & Cantat, T. Convergent reductive depolymerization of wood lignin to isolated phenol derivatives by metal-free catalytic hydrosilylation. Energy Environ. Sci. 8, 2734–2743 (2015).

    CAS  Article  Google Scholar 

  15. 15.

    Ferrini, P. & Rinaldi, R. Catalytic biorefining of plant biomass to non-pyrolytic lignin bio-oil and carbohydrates through hydrogen transfer reactions. Angew. Chem. Int. Ed. 53, 8634–8639 (2014).

    CAS  Article  Google Scholar 

  16. 16.

    Van den Bosch, S. et al. Reductive lignocellulose fractionation into soluble lignin-derived phenolic monomers and dimers and processable carbohydrate pulps. Energy Environ. Sci. 8, 1748–1763 (2015).

    Article  Google Scholar 

  17. 17.

    Parsell, T. et al. A synergistic biorefinery based on catalytic conversion of lignin prior to cellulose starting from lignocellulosic biomass. Green Chem. 17, 1492–1499 (2015).

    CAS  Article  Google Scholar 

  18. 18.

    Barta, K. & Ford, P. C. Catalytic conversion of nonfood woody biomass solids to organic liquids. Acc. Chem. Res. 47, 1503–1512 (2014).

    CAS  Article  Google Scholar 

  19. 19.

    Bähn, S. et al. The catalytic amination of alcohols. ChemCatChem 3, 1853–1864 (2011).

    Article  Google Scholar 

  20. 20.

    Imm, S., Bähn, S., Neubert, L., Neumann, H. & Beller, M. An efficient and general synthesis of primary amines by ruthenium-catalyzed amination of secondary alcohols with ammonia. Angew. Chem. Int. Ed. 49, 8126–8129 (2010).

    CAS  Article  Google Scholar 

  21. 21.

    Sutton, A. D. et al. The hydrodeoxygenation of bioderived furans into alkanes. Nat. Chem. 5, 428–432 (2013).

    CAS  Article  Google Scholar 

  22. 22.

    Nichols, J. M., Bishop, L. M., Bergman, R. G. & Ellman, J. A. Catalytic C–O bond cleavage of 2-aryloxy-1-arylethanols and its application to the depolymerization of lignin-related polymers. J. Am. Chem. Soc. 132, 12554–12555 (2010).

    CAS  Article  Google Scholar 

  23. 23.

    Deuss, P. J. et al. Aromatic monomers by in situ conversion of reactive intermediates in the acid-catalyzed depolymerization of lignin. J. Am. Chem. Soc. 137, 7456–7467 (2015).

    CAS  Article  Google Scholar 

  24. 24.

    Anbarasan, P. et al. Integration of chemical catalysis with extractive fermentation to produce fuels. Nature 491, 235–239 (2012).

    CAS  Article  Google Scholar 

  25. 25.

    Sreekumar, S. et al. Production of an acetone-butanol-ethanol mixture from Clostridium acetobutylicum and its conversion to high-value biofuels. Nat. Protoc. 10, 528–537 (2015).

    CAS  Article  Google Scholar 

  26. 26.

    Yang, J. et al. Synthesis of diesel and jet fuel range alkanes with furfural and ketones from lignocellulose under solvent free conditions. Green. Chem. 16, 4879–4884 (2014).

    CAS  Article  Google Scholar 

  27. 27.

    Li, G. et al. Synthesis of diesel or jet fuel range cycloalkanes with 2-methylfuran and cyclopentanone from lignocellulose. Energy Fuels 28, 5112–5118 (2014).

    CAS  Article  Google Scholar 

  28. 28.

    Sun, Z. et al. Efficient catalytic conversion of ethanol to 1-butanol via the Guerbet reaction over copper- and nickel-doped porous metal oxides. ACS Sustain. Chem. Eng. 5, 1738–1746 (2017).

    CAS  Article  Google Scholar 

  29. 29.

    Mycroft, Z., Gomis, M., Mines, P., Law, P. & Bugg, T. D. H. Biocatalytic conversion of lignin to aromatic dicarboxylic acids in Rhodococcus jostii RHA1 by re-routing aromatic degradation pathways. Green Chem. 17, 4974–4979 (2015).

    CAS  Article  Google Scholar 

  30. 30.

    Shimizu, K. I., Kon, K., Onodera, W., Yamazaki, H. & Kondo, J. N. Heterogeneous Ni catalyst for direct synthesis of primary amines from alcohols and ammonia. ACS Catal. 3, 112–117 (2013).

    CAS  Article  Google Scholar 

  31. 31.

    Gunanathan, C. & Milstein, D. Selective synthesis of primary amines directly from alcohols and ammonia. Angew. Chem. Int. Ed. 47, 8661–8664 (2008).

    CAS  Article  Google Scholar 

  32. 32.

    Jagadeesh, R. V., Junge, H. & Beller, M. Green synthesis of nitriles using non-noble metal oxides-based nanocatalysts. Nat. Commun. 5, 4123 (2014).

    CAS  Article  Google Scholar 

  33. 33.

    Gooβen, L. J. & Rodríguez, N. A mild and efficient protocol for the conversion of carboxylic acids to olefins by a catalytic decarbonylative elimination reaction. Chem. Commun. 0, 724–725 (2004).

  34. 34.

    Lavoie, C. M. et al. Challenging nickel-catalysed amine arylations enabled by tailored ancillary ligand design. Nat. Commun. 7, 11073 (2016).

    Article  Google Scholar 

  35. 35.

    Tobisu, M. & Chatani, N. Cross-couplings using aryl ethers via C–O bond activation enabled by nickel catalysts. Acc. Chem. Res. 48, 1717–1726 (2015).

    CAS  Article  Google Scholar 

  36. 36.

    Álvarez-Bercedo, P. & Martin, R. Ni-catalyzed reduction of inert C–O bonds: A new strategy for using aryl ethers as easily removable directing groups. J. Am. Chem. Soc. 132, 17352–17353 (2010).

    Article  Google Scholar 

  37. 37.

    St Amant, A. H., Frazier, C. P., Newmeyer, B., Fruehauf, K. R. & Read de Alaniz, J. Direct synthesis of anilines and nitrosobenzenes from phenols. Org. Biomol. Chem. 14, 5520–5524 (2016).

    Article  Google Scholar 

  38. 38.

    Plourde, G. L. Studies towards the diastereoselective spiroannulation of phenolic derivatives. Tetrahedron Lett. 43, 3597–3599 (2002).

    CAS  Article  Google Scholar 

  39. 39.

    Hamid, M. H. S. A. et al. Ruthenium-catalyzed N-alkylation of amines and sulfonamides using borrowing hydrogen methodology. J. Am. Chem. Soc. 131, 1766–1774 (2009).

    CAS  Article  Google Scholar 

  40. 40.

    Zhao, S. & Abu-Omar, M. M. Biobased epoxy nanocomposites derived from lignin-based monomers. Biomacromolecules 16, 2025–2031 (2015).

    CAS  Article  Google Scholar 

  41. 41.

    Koelewijn, S.-F. et al. Sustainable bisphenols from renewable softwood lignin feedstock for polycarbonates and cyanate ester resins. Green Chem. 19, 2561–2570 (2017).

    CAS  Article  Google Scholar 

  42. 42.

    Llevot, A., Grau, E., Carlotti, S., Grelier, S. & Cramail, H. From lignin-derived aromatic compounds to novel biobased polymers. Macromol. Rapid Commun. 37, 9–28 (2016).

    CAS  Article  Google Scholar 

  43. 43.

    Upton, B. M. & Kasko, A. M. Strategies for the conversion of lignin to high-value polymeric materials: review and perspective. Chem. Rev. 116, 2275–2306 (2016).

    CAS  Article  Google Scholar 

  44. 44.

    Takeshima, H., Satoh, K. & Kamigaito, M. Bio-based functional styrene monomers derived from naturally occurring ferulic acid for poly(vinylcatechol) and poly(vinylguaiacol) via controlled radical polymerization. Macromolecules 50, 4206–4216 (2017).

    CAS  Article  Google Scholar 

  45. 45.

    Miura, Y., Hoshino, Y. & Seto, H. Glycopolymer nanobiotechnology. Chem. Rev. 116, 1673–1692 (2016).

    CAS  Article  Google Scholar 

  46. 46.

    Wilker, J. J. Biomaterials: redox and adhesion on the rocks. Nat. Chem. Biol. 7, 579–580 (2011).

    CAS  Article  Google Scholar 

  47. 47.

    Hutchinson, S. A., Luetjens, H. & Scammells, P. J. A new synthesis of the benzofuran adenosine antagonist XH-14. Bioorg. Med. Chem. Lett. 7, 3081–3084 (1997).

    CAS  Article  Google Scholar 

  48. 48.

    Schlepphorst, C., Maji, B. & Glorius, F. Ruthenium-NHC catalyzed α-alkylation of methylene ketones provides branched products through borrowing hydrogen strategy. ACS Catal. 6, 4184–4188 (2016).

    CAS  Article  Google Scholar 

  49. 49.

    Ackermann, L. & Althammer, A. Domino N-H/C-H bond activation: palladium-catalyzed synthesis of annulated heterocycles using dichloro(hetero)arenes. Angew. Chem. Int. Ed. 46, 1627–1629 (2007).

    CAS  Article  Google Scholar 

  50. 50.

    Lei, M., Gan, X., Zhao, K., Yu, Q. & Hu, L. Synthesis and cytotoxicity evaluation of 4-amino-4-dehydroxylarctigenin derivatives in glucose-starved A549 tumor cells. Bioorg. Med. Chem. Lett. 25, 435–437 (2015).

    CAS  Article  Google Scholar 

Download references


K.B. is grateful for financial support from the European Research Council, ERC Starting Grant 2015 (CatASus) 638076. This work is part of the research programme Talent Scheme (Vidi) with project number 723.015.005 (K.B.), which is partly financed by the Netherlands Organisation for Scientific Research (NWO). Z.S. is grateful for financial support from the China Scholarship Council (grant number 201406060027). B.F. is grateful for the financial support from the Hungarian Ministry of Human Capacities (NTP-NFTÖ-17-B-0593).

Author information




K.B. conceived the idea, supervised the research and wrote the manuscript. Z.S. designed the LignoFlex process and performed all related chemical reactions. Z.S. also performed reactions related to Stage 2 and synthesized compounds 3G, 4 and 6. G.B. and A.A. contributed equally to this research and designed pathways for the functionalization of 1G and synthesized compounds 5, 7, 7S, 8, 9ae, 10, 11, 12ac, 13, 14 and 15. M.C.A.S. performed catalyst characterization. P.J.D. measured and analysed the 2D-HSQC NMR data and was involved in figure preparation. B.F. contributed to the catalytic conversion of alcohol mixture to alkanes, and designed synthetic pathways to obtain compound 6Cy. All of the authors commented on the manuscript during its preparation.

Corresponding author

Correspondence to Katalin Barta.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–93, Supplementary Tables 1–21, Supplementary Notes 1–14, Supplementary Methods, Supplementary References.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sun, Z., Bottari, G., Afanasenko, A. et al. Complete lignocellulose conversion with integrated catalyst recycling yielding valuable aromatics and fuels. Nat Catal 1, 82–92 (2018).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing