Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A bioinspired soluble manganese cluster as a water oxidation electrocatalyst with low overpotential


The electrocatalytic oxidation of water is a challenging step towards the production of hydrogen as an alternative fuel. In nature, water oxidation is catalysed by a high oxidation state Mn4CaO x cluster. The corresponding industrial development of manganese catalysts for water oxidation is very attractive due to the low cost of this metal. A few manganese complexes have been previously explored as water oxidation catalysts using various chemical oxidants in homogeneous and heterogeneous systems. Efficient electrochemical water oxidation catalysed by a soluble manganese-oxo cluster, however, has not been achieved. Here, we report the synthesis and characterization of [Mn12O12(O2CC6H3(OH)2)16(H2O)4] (Mn12DH), a unique example within this class of compounds in being both highly soluble and stable in water. We demonstrate that Mn12DH, which is readily prepared from cheap and environmentally benign starting materials, is a stable homogeneous water oxidation electrocatalyst operating at pH 6 with an exceptionally low overpotential of only 334 mV.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Mn12Ac as a structural mimic of the OEC capable of reversible oxidation processes.
Fig. 2: Cyclic voltammograms.
Fig. 3: Cyclic voltammograms at 100 mV s–1 for Mn12DH in deoxygenated 0.1 M acetate buffer at pH 6.0.
Fig. 4: Scan rate dependence experiments.
Fig. 5: Bulk electrolysis and direct oxygen measurements.


  1. 1.

    Barber, J. Biological solar energy. Philos. Trans. R. Soc. London Ser. A 365, 1007–1023 (2007).

    CAS  Article  Google Scholar 

  2. 2.

    Dau, H. & Zaharieva, I. Principles, efficiency, and blueprint character of solar-energy conversion in photosynthetic water oxidation. Acc. Chem. Res. 42, 1861–1870 (2009).

    CAS  Article  Google Scholar 

  3. 3.

    Ferreira, K. N., Iverson, T. M., Maghlaoui, K., Barber, J. & Iwata, S. Architecture of the photosynthetic oxygen-evolving center. Science 303, 1831–1838 (2004).

    CAS  Article  Google Scholar 

  4. 4.

    Umena, Y., Kawakami, K., Shen, J. R. & Kamiya, N. Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9Å. Nature 473, 55–60 (2011).

    CAS  Article  Google Scholar 

  5. 5.

    Zhang, C. et al. A synthetic Mn4Ca-cluster mimicking the oxygen-evolving center of photosynthesis. Science 348, 690–693 (2010).

    Article  Google Scholar 

  6. 6.

    Kanady, J. S., Tsui, E. Y., Day, M. W. & Agapie, T. A Synthetic model of the Mn3Ca subsite of the oxygen-evolving complex in photosystem II. Science 333, 733–736 (2011).

    CAS  Article  Google Scholar 

  7. 7.

    Mukherjee, S. et al. Synthetic model of the asymmetric [Mn3CaO4] cubane core of the oxygen-evolving complex of photosystem II. Proc. Natl Acad. Sci. USA 109, 2257–2262 (2012).

    CAS  Article  Google Scholar 

  8. 8.

    Manchanda, R., Brudvig, G. W. & Crabtree, R. H. High-valent oxomanganese clusters: structural and mechanistic work relevant to the oxygen-evolving center in photosystem II. Coord. Chem. Rev. 144, 1–38 (1995).

    CAS  Article  Google Scholar 

  9. 9.

    Limburg, J. et al. A functional model for O–O bond formation by the O2-evolving complex in photosystem II. Science 283, 1524–1527 (1999).

    CAS  Article  Google Scholar 

  10. 10.

    Poulsen, A. K., Rompel, A. & McKenzie, C. J. Water oxidation catalyzed by a dinuclear Mn complex: a functional model for the oxygen-evolving center of photosystem II. Angew. Chem. Int. Ed. 44, 6916–6920 (2005).

    CAS  Article  Google Scholar 

  11. 11.

    Tagore, R., Crabtree, R. H. & Brudvig, G. W. Oxygen evolution catalysis by a dimanganese complex and its relation to photosynthetic water oxidation. Inorg. Chem. 47, 1815–1823 (2008).

    CAS  Article  Google Scholar 

  12. 12.

    Dismukes, G. C. et al. Development of bioinspired Mn4O4-cubane water oxidation catalysts: lessons from photosynthesis. Acc. Chem. Res. 42, 1935–1943 (2009).

    CAS  Article  Google Scholar 

  13. 13.

    Najafpour, M. M., Ehrenberg, T., Wiechen, M. & Kurz, P. Calcium manganese(III) oxides (CaMn2O4xH2O) as biomimetic oxygen-evolving catalysts. Angew. Chem. Int. Ed. 49, 2233–2237 (2010).

    CAS  Article  Google Scholar 

  14. 14.

    Yagi, M., Toda, M., Yamada, S. & Yamazaki, H. An artificial model of photosynthetic photosystem II: visible-light-derived O2 production from water by a di-µ-oxo-bridged manganese dimer as an oxygen evolving center. Chem. Commun. 46, 8594–8596 (2010).

    CAS  Article  Google Scholar 

  15. 15.

    Brimblecombe, R., Koo, A., Dismukes, G. C., Swiegers, G. F. & Spiccia, L. Solar driven water oxidation by a bioinspired manganese molecular catalyst. J. Am. Chem. Soc. 132, 2892–2894 (2010).

    CAS  Article  Google Scholar 

  16. 16.

    Rüttinger, W. & Dismukes, G. C. Synthetic water-oxidation catalysts for artificial photosynthetic water oxidation. Chem. Rev. 97, 1–24 (1997).

    Article  Google Scholar 

  17. 17.

    Yagi, M. & Kaneko, M. Molecular catalysts for water oxidation. Chem. Rev. 101, 21–35 (2001).

    CAS  Article  Google Scholar 

  18. 18.

    Kärkäs, M. D., Verho, O., Johnston, E. V. & Åkermark, B. Artificial photosynthesis: molecular systems for catalytic water oxidation. Chem. Rev. 114, 11863–12001 (2014).

    Article  Google Scholar 

  19. 19.

    Tagore, R., Chen, H., Zhang, H., Crabtree, R. H. & Brudvig, G. W. Homogeneous water oxidation by a di-µ-oxo dimanganese complex in the presence of Ce4+. Inorg. Chim. Acta 360, 2983–2989 (2007).

    CAS  Article  Google Scholar 

  20. 20.

    Karlsson, E. A. et al. Photosensitized water oxidation by use of a bioinspired manganese catalyst. Angew. Chem. Int. Ed. 50, 11715–11718 (2011).

    CAS  Article  Google Scholar 

  21. 21.

    Sala, X., Romero, I., Rodríguez, M., Escriche, L. & Llobet, A. Molecular catalysts that oxidize water to dioxygen. Angew. Chem. Int. Ed. 48, 2842–2852 (2009).

    CAS  Article  Google Scholar 

  22. 22.

    Concepcion, J. J. et al. Making oxygen with ruthenium complexes. Acc. Chem. Res. 42, 1954–1965 (2009).

    CAS  Article  Google Scholar 

  23. 23.

    Matheu, R. et al. Intramolecular proton transfer boosts water oxidation catalyzed by a Ru complex. J. Am. Chem. Soc. 137, 10786–10795 (2015).

    CAS  Article  Google Scholar 

  24. 24.

    Kanan, M. W. & Nocera, D. G. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 321, 1072–1075 (2008).

    CAS  Article  Google Scholar 

  25. 25.

    Jiao, F. & Frei, H. Nanostructured cobalt oxide clusters in mesoporous silica as efficient oxygen-evolving catalysts. Angew. Chem. Int. Ed. 48, 1841–1844 (2009).

    CAS  Article  Google Scholar 

  26. 26.

    Yin, Q. et al. A fast soluble carbon-free molecular water oxidation catalyst based on abundant metals. Science 328, 342–328 (2010).

    CAS  Article  Google Scholar 

  27. 27.

    Youngblood, W. J. et al. Photoassisted overall water splitting in a visible light-absorbing dye-sensitized photoelectrochemical cell. J. Am. Chem. Soc. 131, 926–927 (2009).

    CAS  Article  Google Scholar 

  28. 28.

    Barnett, S. M., Goldberg, K. I. & Mayer, J. M. A soluble copper–bipyridine water-oxidation electrocatalyst. Nat. Chem. 4, 498–502 (2012).

    CAS  Article  Google Scholar 

  29. 29.

    Zhang, M. T., Chen, Z., Kang, P. & Meyer, T. J. Electrocatalytic water oxidation with a copper(II) polypeptide complex. J. Am. Chem. Soc. 135, 2048–2051 (2013).

    CAS  Article  Google Scholar 

  30. 30.

    Naruta, Y., Sasayama, M. A. & Sasaki, T. Oxygen evolution by oxidation of water with manganese porphyrin dimers. Angew. Chem. Int. Ed. 33, 1839–1841 (1994).

    Article  Google Scholar 

  31. 31.

    Kärkäs, M. D. & Åkermark, B. Water oxidation using earth-abundant transition metal catalysts: opportunities and challenges. Dalton Trans. 45, 14421–14461 (2016).

    Article  Google Scholar 

  32. 32.

    Bagai, R. & Christou, G. The Drosophila of single-molecule magnetism: [Mn12O12(O2CR)16(H2O)4]. Chem. Soc. Rev. 38, 1011–1026 (2009).

    CAS  Article  Google Scholar 

  33. 33.

    Maayan, G. & Christou, G. ‘Old’ clusters with new function: oxidation catalysis by high oxidation state manganese and cerium/manganese clusters using O2 gas. Inorg. Chem. 50, 7015–7021 (2011).

    CAS  Article  Google Scholar 

  34. 34.

    Yan, Y., Lee, J. S. & Ruddy, D. A. Structure−function relationships for electrocatalytic water oxidation by molecular [Mn12O12] clusters. Inorg. Chem. 54, 4550–4555 (2015).

    CAS  Article  Google Scholar 

  35. 35.

    Sessoli, R. et al. High-spin molecules: [Mn12O12(O2CR)16(H2O)4]. J. Am. Chem. Soc. 115, 1804–1816 (1993).

    CAS  Article  Google Scholar 

  36. 36.

    Means, J. et al. Films of Mn12-acetate deposited by low-energy laser ablation. J. Magn. Magn. Mater. 284, 215–219 (2004).

    CAS  Article  Google Scholar 

  37. 37.

    Limburg, J., Brudvig, G. W. & Crabtree, R. H. O2 evolution and permanganate formation from high-valent manganese complexes. J. Am. Chem. Soc. 119, 2761–2762 (1997).

    CAS  Article  Google Scholar 

  38. 38.

    Cady, C. W., Shinopoulos, K. E., Crabtree, R. H. & Brudvig, G. W. [(H2O)(terpy)Mn(μ-O)2Mn(terpy)(OH2)](NO3)3 (terpy = 2,2′:6,2′′-terpyridine) and its relevance to the oxygen-evolving complex of photosystem II examined through pH dependent cyclic voltammetry. Dalton Trans. 39, 3985–3989 (2010).

    CAS  Article  Google Scholar 

  39. 39.

    Bard, A. J. & Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications (Wiley, New York, 2001).

    Google Scholar 

  40. 40.

    Costentin, C., Passard, G. & Savéant, J.-M. Benchmarking of homogeneous electrocatalysts: overpotential, turnover frequency, limiting turnover number. J. Am. Chem. Soc. 137, 5461–5467 (2015).

    CAS  Article  Google Scholar 

  41. 41.

    Zhang, T., Wang, C., Liu, S., Wang, J. L. & Lin, W. A biomimetic copper water oxidation catalyst with low overpotential. J. Am. Chem. Soc. 136, 273–281 (2014).

    CAS  Article  Google Scholar 

  42. 42.

    Garrido-Barros, P. et al. Redox non-innocent ligand controls water oxidation overpotential in a new family of mononuclear Cu-based efficient catalysts. J. Am. Chem. Soc. 137, 6758–6761 (2015).

    CAS  Article  Google Scholar 

Download references


This research was funded by the Solar Fuels Israel Center of Research Excellence (I-CORE) of the Israeli Science Foundation (ISF), grant number 2018762, and supported by the Grand Energy Technion Program. It was also funded by the USA National Science Foundation under grant CHE-1410394. We thank C. di Giovanni for the CV measurements of Mn 12 Ac in the glove box and for Fig. 2a. G.M. is grateful to A. Llobet at ICIQ, Tarragona, Spain, for the opportunity to work in his laboratories in order to study oxygen measurement techniques and gain additional knowledge in electrochemistry.

Author information




G.M. and G.C. planned the research, and G.M. and N.G. performed the experiments. G.M., N.G. and G.C. prepared the manuscript.

Corresponding author

Correspondence to Galia Maayan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Supplementary Figures 1–16, Supplementary Table 1, Supplementary References

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Maayan, G., Gluz, N. & Christou, G. A bioinspired soluble manganese cluster as a water oxidation electrocatalyst with low overpotential. Nat Catal 1, 48–54 (2018).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing