Article | Published:

Selective aerobic oxidation reactions using a combination of photocatalytic water oxidation and enzymatic oxyfunctionalizations

Nature Catalysisvolume 1pages5562 (2018) | Download Citation

Abstract

Peroxygenases offer an attractive means to address challenges in selective oxyfunctionalization chemistry. Despite this, their application in synthetic chemistry remains challenging due to their facile inactivation by the stoichiometric oxidant H2O2. Often atom-inefficient peroxide generation systems are required, which show little potential for large-scale implementation. Here, we show that visible-light-driven, catalytic water oxidation can be used for in situ generation of H2O2 from water, rendering the peroxygenase catalytically active. In this way, the stereoselective oxyfunctionalization of hydrocarbons can be achieved by simply using the catalytic system, water and visible light.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Kille, S., Zilly, F. E., Acevedo, J. P. & Reetz, M. T. Regio- and stereoselectivity of P450-catalysed hydroxylation of steroids controlled by laboratory evolution. Nat. Chem. 3, 738–743 (2011).

  2. 2.

    Kudrik, E. V. et al. An N-bridged high-valent diiron-oxo species on a porphyrin platform that can oxidize methane. Nat. Chem. 4, 1024–1029 (2012).

  3. 3.

    Kamata, K., Yonehara, K., Nakagawa, Y., Uehara, K. & Mizuno, N. Efficient stereo- and regioselective hydroxylation of alkanes catalysed by a bulky polyoxometalate. Nat. Chem. 2, 478–483 (2010).

  4. 4.

    Wang, Y., Lan, D., Durrani, R. & Hollmann, F. Peroxygenases en route to becoming dream catalysts. What are the opportunities and challenges? Curr. Opin. Chem. Biol. 37, 1–9 (2017).

  5. 5.

    Ullrich, R., Nüske, J., Scheibner, K., Spantzel, J. & Hofrichter, M. Novel haloperoxidase from the agaric basidiomycete Agrocybe aegerita oxidizes aryl alcohols and aldehydes. Appl. Environ. Microbiol. 70, 4575–4581 (2004).

  6. 6.

    Grobe, G. et al. High-yield production of aromatic peroxygenase by the agaric fungus Marasmius rotula. AMB Express 1, 31 (2011).

  7. 7.

    Babot, E. D., del Río, J. C., Kalum, L., Martínez, A. T. & Gutiérrez, A. Oxyfunctionalization of aliphatic compounds by a recombinant peroxygenase from Coprinopsis cinerea. Biotechnol. Bioeng. 110, 2323–2332 (2013).

  8. 8.

    van Rantwijk, F. & Sheldon, R. A. Selective oxygen transfer catalysed by heme peroxidases: synthetic and mechanistic aspects. Curr. Opin. Biotechnol. 11, 554–564 (2000).

  9. 9.

    Piontek, K. et al. Structural basis of substrate conversion in a new aromatic peroxygenase: P450 functionality with benefits. J. Biol. Chem. 288, 34767–34776 (2013).

  10. 10.

    Molina-Espeja, P. et al. Directed evolution of unspecific peroxygenase from Agrocybe aegerita. Appl. Environ. Microbiol. 80, 3496–3507 (2014).

  11. 11.

    Bornscheuer, U. T. et al. Engineering the third wave of biocatalysis. Nature 485, 185–194 (2012).

  12. 12.

    Roiban, G. D., Agudo, R. & Reetz, M. T. Cytochrome P450 catalyzed oxidative hydroxylation of achiral organic compounds with simultaneous creation of two chirality centers in a single C–H activation step. Angew. Chem. Int. Ed. 53, 8659–8663 (2014).

  13. 13.

    Joo, H., Lin, Z. L. & Arnold, F. H. Laboratory evolution of peroxide-mediated cytochrome P450 hydroxylation. Nature 399, 670–673 (1999).

  14. 14.

    Holtmann, D. & Hollmann, F. The oxygen dilemma: a severe challenge for the application of monooxygenases? ChemBioChem 17, 1391–1398 (2016).

  15. 15.

    Trost, B. M. The atom economy: a search for synthetic efficiency. Science 254, 1471–1477 (1991).

  16. 16.

    Ni, Y. et al. Peroxygenase-catalyzed oxyfunctionalization reactions promoted by the complete oxidation of methanol. Angew. Chem. Int. Ed. 55, 798–801 (2016).

  17. 17.

    Krieg, T., Huttmann, S., Mangold, K.-M., Schrader, J. & Holtmann, D. Gas diffusion electrode as novel reaction system for an electro-enzymatic process with chloroperoxidase. Green Chem. 13, 2686–2689 (2011).

  18. 18.

    Kofuji, Y. et al. Graphitic carbon nitride doped with biphenyl diimide: efficient photocatalyst for hydrogen peroxide production from water and molecular oxygen by sunlight. ACS Catal. 6, 7021–7029 (2016).

  19. 19.

    Hirakawa, H. et al. Au nanoparticles supported on BiVO4: effective inorganic photocatalysts for H2O2 production from water and O2 under visible light. ACS Catal. 6, 4976–4982 (2016).

  20. 20.

    Molina-Espeja, P., Ma, S., Mate, D. M., Ludwig, R. & Alcalde, M. Tandem-yeast expression system for engineering and producing unspecific peroxygenase. Enz. Microb. Technol. 73–74, 29–33 (2015).

  21. 21.

    Mifsud, M. et al. Photobiocatalytic chemistry of oxidoreductases using water as the electron donor. Nat. Commun. 5, 3145 (2014).

  22. 22.

    Churakova, E. et al. Specific photobiocatalytic oxyfunctionalization reactions. Angew. Chem. Int. Ed. 50, 10716–10719 (2011).

  23. 23.

    Diesen, V. & Jonsson, M. Formation of H2O2 in TiO2 photocatalysis of oxygenated and deoxygenated aqueous systems: a probe for photocatalytically produced hydroxyl radicals. J. Phys. Chem. C 118, 10083–10087 (2014).

  24. 24.

    Teranishi, M., Hoshino, R., Naya, S.-I. & Tada, H. Gold-nanoparticle-loaded carbonate-modified titanium(IV) oxide surface: visible-light-driven formation of hydrogen peroxide from oxygen. Angew. Chem. Int. Ed. 55, 12773–12777 (2016).

  25. 25.

    Li, X. Z., Chen, C. C. & Zhao, J. C. Mechanism of photodecomposition of H2O2 on TiO2 surfaces under visible light irradiation. Langmuir 17, 4118–4122 (2001).

  26. 26.

    Dvoranová, D., Barbieriková, Z. & Brezová, V. Radical intermediates in photoinduced reactions on TiO2 (an EPR spin trapping study). Molecules 19, 17279 (2014).

  27. 27.

    Schneider, J. et al. Understanding TiO2 photocatalysis: mechanisms and materials. Chem. Rev. 114, 9919–9986 (2014).

  28. 28.

    Marquez, L. A. & Dunford, H. B. Reaction of compound III of myeloperoxidase with ascorbic acid. J. Biol. Chem. 265, 6074–6078 (1990).

  29. 29.

    Bilski, P., Reszka, K., Bilska, M. & Chignell, C. F. Oxidation of the spin trap 5,5-dimethyl-1-pyrroline N-oxide by singlet oxygen in aqueous solution. J. Am. Chem. Soc. 118, 1330–1338 (1996).

  30. 30.

    Hanaor, D. A. H. & Sorrell, C. C. Review of the anatase to rutile phase transformation. J. Mater. Sci. 46, 855–874 (2011).

  31. 31.

    Fitzpatrick, T. B., Amrhein, N. & Macheroux, P. Characterization of YqjM, an old yellow enzyme homolog from Bacillus subtilis involved in the oxidative stress response. J. Biol. Chem. 278, 19891–19897 (2003).

  32. 32.

    Hanefeld, U., Gardossi, L. & Magner, E. Understanding enzyme immobilisation. Chem. Soc. Rev. 38, 453–468 (2009).

  33. 33.

    Guo, Q. et al. How far can hydroxyl radicals travel? An electrochemical study based on a DNA mediated electron transfer process. Chem. Commun. 47, 11906–11908 (2011).

  34. 34.

    Peter, S. et al. Enzymatic one-pot conversion of cyclohexane into cyclohexanone: comparison of four fungal peroxygenases. J. Mol. Catal. B Enzym. 103, 47–51 (2014).

  35. 35.

    Kluge, M., Ullrich, R., Scheibner, K. & Hofrichter, M. Stereoselective benzylic hydroxylation of alkylbenzenes and epoxidation of styrene derivatives catalyzed by the peroxygenase of Agrocybe aegerita. Green Chem. 14, 440–446 (2012).

  36. 36.

    Peter, S. et al. Selective hydroxylation of alkanes by an extracellular fungal peroxygenase. FEBS J. 278, 3667–3675 (2011).

  37. 37.

    Sehl, T. et al. Two steps in one pot: enzyme cascade for the synthesis of nor(pseudo)ephedrine from inexpensive starting materials. Angew. Chem. Int. Ed. 52, 6772–6775 (2013).

  38. 38.

    Hailes, H. C. et al. Engineering stereoselectivity of ThDP-dependent enzymes. FEBS J. 280, 6374–6394 (2013).

  39. 39.

    Höhne, M., Schätzle, S., Jochens, H., Robins, K. & Bornscheuer, U. T. Rational assignment of key motifs for function guides in silico enzyme identification. Nat. Chem. Biol. 6, 807–813 (2010).

  40. 40.

    Hanson, R. L. et al. Preparation of (R)-amines from racemic amines with an (S)-amine transaminase from Bacillus megaterium. Adv. Synth. Catal. 350, 1367–1375 (2008).

  41. 41.

    Both, P. et al. Whole-cell biocatalysts for stereoselective C−H amination reactions. Angew. Chem. Int. Ed. 55, 1511–1513 (2016).

  42. 42.

    Fernández-Fueyo, E. et al. Chemoenzymatic halogenation of phenols by using the haloperoxidase from Curvularia inaequalis. ChemCatChem 7, 4035–4038 (2015).

  43. 43.

    van Schijndel, J., Vollenbroek, E. & Wever, R. The chloroperoxidase from the fungus Curvularia inaequalis: a novel vanadium enzyme. Biochim. Biophys. Acta 1161, 249–256 (1993).

  44. 44.

    Frank, A., Seel, C. J., Groll, M. & Gulder, T. Characterization of a cyanobacterial haloperoxidase and evaluation of its biocatalytic halogenation potential. ChemBioChem 17, 2028–2032 (2016).

  45. 45.

    Getrey, L., Krieg, T., Hollmann, F., Schrader, J. & Holtmann, D. Enzymatic halogenation of the phenolic monoterpenes thymol and carvacrol with chloroperoxidase. Green Chem. 16, 1104–1108 (2014).

  46. 46.

    Martin, D. J. et al. Highly efficient photocatalytic H2 evolution from water using visible light and structure-controlled graphitic carbon nitride. Angew. Chem. Int. Ed. 53, 9240–9245 (2014).

  47. 47.

    Zhang, W., Bariotaki, A., Smonou, I. & Hollmann, F. Visible-light-driven photooxidation of alcohols using surface-doped graphitic carbon nitride. Green Chem. 19, 2096–2100 (2017).

  48. 48.

    Liu, J. et al. Carbon nanodot surface modifications initiate highly efficient, stable catalysts for both oxygen evolution and reduction reactions. Adv. Energ. Mater. 6, 1502039 (2016).

  49. 49.

    Martindale, B. C. M., Hutton, G. A. M., Caputo, C. A. & Reisner, E. Solar hydrogen production using carbon quantum dots and a molecular nickel catalyst. J. Am. Chem. Soc. 137, 6018–6025 (2015).

  50. 50.

    Hutton, G. A. M. et al. Carbon dots as versatile photosensitizers for solar-driven catalysis with redox enzymes. J. Am. Chem. Soc. 138, 16722–16730 (2016).

  51. 51.

    Priebe, J. B. et al. Solar hydrogen production by plasmonic Au-TiO2 catalysts: impact of synthesis protocol and TiO2 phase on charge transfer efficiency and H2 evolution rates. ACS Catal. 5, 2137–2148 (2015).

Download references

Acknowledgements

Financial support by the European Research Council (ERC Consolidator grant no. 648026) is gratefully acknowledged. The authors thank B. Norder for XRD, W. H. Evers for TEM and F. Hagen for EPR measurements. The authors also thank S. Schmidt for the preparation of benzaldehyde lyase, M. Pesic for the preparation of YqjM and T. Knaus for the preparation of ω-transaminases. F.G.M. received funding as an ERC Starting Grant Fellow (grant agreement 638271).

Author information

Affiliations

  1. Department of Biotechnology, Delft University of Technology, Delft, The Netherlands

    • Wuyuan Zhang
    • , Elena Fernández-Fueyo
    • , Yan Ni
    • , Morten van Schie
    • , Jenö Gacs
    •  & Frank Hollmann
  2. Van’t Hoff Institute for Molecular Sciences (HIMS), Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands

    • Rokus Renirie
    • , Ron Wever
    •  & Francesco G. Mutti
  3. Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany

    • Dörte Rother
  4. Department of Biocatalysis, Institute of Catalysis, CSIC, Madrid, Spain

    • Miguel Alcalde

Authors

  1. Search for Wuyuan Zhang in:

  2. Search for Elena Fernández-Fueyo in:

  3. Search for Yan Ni in:

  4. Search for Morten van Schie in:

  5. Search for Jenö Gacs in:

  6. Search for Rokus Renirie in:

  7. Search for Ron Wever in:

  8. Search for Francesco G. Mutti in:

  9. Search for Dörte Rother in:

  10. Search for Miguel Alcalde in:

  11. Search for Frank Hollmann in:

Contributions

W.Z., E.F.-F., Y.N., M.v.S. and J.G. performed the experimental work and analysed the results; R.R., R.W., F.G.M., D.R. and M.A. provided biocatalysts and participated in the planning and analysis of the experiments; W.Z. and F.H. conceived and designed the experiments. All authors co-wrote the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Frank Hollmann.

Electronic supplementary material

  1. Supplementary information

    Supplementary Methods, Supplementary Figures 1-37, Supplementary Tables 1-5, Supplementary References.

About this article

Publication history

Received

Accepted

Published

Issue Date

DOI

https://doi.org/10.1038/s41929-017-0001-5

Further reading