Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Selective aerobic oxidation reactions using a combination of photocatalytic water oxidation and enzymatic oxyfunctionalizations

Abstract

Peroxygenases offer an attractive means to address challenges in selective oxyfunctionalization chemistry. Despite this, their application in synthetic chemistry remains challenging due to their facile inactivation by the stoichiometric oxidant H2O2. Often atom-inefficient peroxide generation systems are required, which show little potential for large-scale implementation. Here, we show that visible-light-driven, catalytic water oxidation can be used for in situ generation of H2O2 from water, rendering the peroxygenase catalytically active. In this way, the stereoselective oxyfunctionalization of hydrocarbons can be achieved by simply using the catalytic system, water and visible light.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Photochemical water oxidation generating H2O2 to promote peroxygenase-catalysed hydroxylations.
Fig. 2: Time courses of the photoenzymatic hydroxylation of ethyl benzene at varying catalyst concentrations.
Fig. 3: Stability of rAaeUPO in the presence of anatase-Au-TiO2.
Fig. 4: EPR spectra recorded during the illumination of anatase and rutile Au-TiO2 in water.
Fig. 5: Effect of reducing the interaction of rAaeUPO with the TiO2 surface on the robustness of the photoenzymatic reaction.
Fig. 6: Photoenzymatic cascade reactions.
Fig. 7: Photoenzymatic halogenation of thymol.
Fig. 8: Photoenzymatic reactions using CND photocatalysts and FMN cocatalysts.

References

  1. 1.

    Kille, S., Zilly, F. E., Acevedo, J. P. & Reetz, M. T. Regio- and stereoselectivity of P450-catalysed hydroxylation of steroids controlled by laboratory evolution. Nat. Chem. 3, 738–743 (2011).

    CAS  Article  Google Scholar 

  2. 2.

    Kudrik, E. V. et al. An N-bridged high-valent diiron-oxo species on a porphyrin platform that can oxidize methane. Nat. Chem. 4, 1024–1029 (2012).

    CAS  Article  Google Scholar 

  3. 3.

    Kamata, K., Yonehara, K., Nakagawa, Y., Uehara, K. & Mizuno, N. Efficient stereo- and regioselective hydroxylation of alkanes catalysed by a bulky polyoxometalate. Nat. Chem. 2, 478–483 (2010).

    CAS  Article  Google Scholar 

  4. 4.

    Wang, Y., Lan, D., Durrani, R. & Hollmann, F. Peroxygenases en route to becoming dream catalysts. What are the opportunities and challenges? Curr. Opin. Chem. Biol. 37, 1–9 (2017).

    Article  Google Scholar 

  5. 5.

    Ullrich, R., Nüske, J., Scheibner, K., Spantzel, J. & Hofrichter, M. Novel haloperoxidase from the agaric basidiomycete Agrocybe aegerita oxidizes aryl alcohols and aldehydes. Appl. Environ. Microbiol. 70, 4575–4581 (2004).

    Article  Google Scholar 

  6. 6.

    Grobe, G. et al. High-yield production of aromatic peroxygenase by the agaric fungus Marasmius rotula. AMB Express 1, 31 (2011).

    Article  Google Scholar 

  7. 7.

    Babot, E. D., del Río, J. C., Kalum, L., Martínez, A. T. & Gutiérrez, A. Oxyfunctionalization of aliphatic compounds by a recombinant peroxygenase from Coprinopsis cinerea. Biotechnol. Bioeng. 110, 2323–2332 (2013).

    CAS  Article  Google Scholar 

  8. 8.

    van Rantwijk, F. & Sheldon, R. A. Selective oxygen transfer catalysed by heme peroxidases: synthetic and mechanistic aspects. Curr. Opin. Biotechnol. 11, 554–564 (2000).

    Article  Google Scholar 

  9. 9.

    Piontek, K. et al. Structural basis of substrate conversion in a new aromatic peroxygenase: P450 functionality with benefits. J. Biol. Chem. 288, 34767–34776 (2013).

    CAS  Article  Google Scholar 

  10. 10.

    Molina-Espeja, P. et al. Directed evolution of unspecific peroxygenase from Agrocybe aegerita. Appl. Environ. Microbiol. 80, 3496–3507 (2014).

    Article  Google Scholar 

  11. 11.

    Bornscheuer, U. T. et al. Engineering the third wave of biocatalysis. Nature 485, 185–194 (2012).

    CAS  Article  Google Scholar 

  12. 12.

    Roiban, G. D., Agudo, R. & Reetz, M. T. Cytochrome P450 catalyzed oxidative hydroxylation of achiral organic compounds with simultaneous creation of two chirality centers in a single C–H activation step. Angew. Chem. Int. Ed. 53, 8659–8663 (2014).

    CAS  Article  Google Scholar 

  13. 13.

    Joo, H., Lin, Z. L. & Arnold, F. H. Laboratory evolution of peroxide-mediated cytochrome P450 hydroxylation. Nature 399, 670–673 (1999).

    CAS  Article  Google Scholar 

  14. 14.

    Holtmann, D. & Hollmann, F. The oxygen dilemma: a severe challenge for the application of monooxygenases? ChemBioChem 17, 1391–1398 (2016).

    CAS  Article  Google Scholar 

  15. 15.

    Trost, B. M. The atom economy: a search for synthetic efficiency. Science 254, 1471–1477 (1991).

    CAS  Article  Google Scholar 

  16. 16.

    Ni, Y. et al. Peroxygenase-catalyzed oxyfunctionalization reactions promoted by the complete oxidation of methanol. Angew. Chem. Int. Ed. 55, 798–801 (2016).

    CAS  Article  Google Scholar 

  17. 17.

    Krieg, T., Huttmann, S., Mangold, K.-M., Schrader, J. & Holtmann, D. Gas diffusion electrode as novel reaction system for an electro-enzymatic process with chloroperoxidase. Green Chem. 13, 2686–2689 (2011).

    CAS  Article  Google Scholar 

  18. 18.

    Kofuji, Y. et al. Graphitic carbon nitride doped with biphenyl diimide: efficient photocatalyst for hydrogen peroxide production from water and molecular oxygen by sunlight. ACS Catal. 6, 7021–7029 (2016).

    CAS  Article  Google Scholar 

  19. 19.

    Hirakawa, H. et al. Au nanoparticles supported on BiVO4: effective inorganic photocatalysts for H2O2 production from water and O2 under visible light. ACS Catal. 6, 4976–4982 (2016).

    CAS  Article  Google Scholar 

  20. 20.

    Molina-Espeja, P., Ma, S., Mate, D. M., Ludwig, R. & Alcalde, M. Tandem-yeast expression system for engineering and producing unspecific peroxygenase. Enz. Microb. Technol. 73–74, 29–33 (2015).

    Article  Google Scholar 

  21. 21.

    Mifsud, M. et al. Photobiocatalytic chemistry of oxidoreductases using water as the electron donor. Nat. Commun. 5, 3145 (2014).

    Article  Google Scholar 

  22. 22.

    Churakova, E. et al. Specific photobiocatalytic oxyfunctionalization reactions. Angew. Chem. Int. Ed. 50, 10716–10719 (2011).

    CAS  Article  Google Scholar 

  23. 23.

    Diesen, V. & Jonsson, M. Formation of H2O2 in TiO2 photocatalysis of oxygenated and deoxygenated aqueous systems: a probe for photocatalytically produced hydroxyl radicals. J. Phys. Chem. C 118, 10083–10087 (2014).

    CAS  Article  Google Scholar 

  24. 24.

    Teranishi, M., Hoshino, R., Naya, S.-I. & Tada, H. Gold-nanoparticle-loaded carbonate-modified titanium(IV) oxide surface: visible-light-driven formation of hydrogen peroxide from oxygen. Angew. Chem. Int. Ed. 55, 12773–12777 (2016).

    CAS  Article  Google Scholar 

  25. 25.

    Li, X. Z., Chen, C. C. & Zhao, J. C. Mechanism of photodecomposition of H2O2 on TiO2 surfaces under visible light irradiation. Langmuir 17, 4118–4122 (2001).

    CAS  Article  Google Scholar 

  26. 26.

    Dvoranová, D., Barbieriková, Z. & Brezová, V. Radical intermediates in photoinduced reactions on TiO2 (an EPR spin trapping study). Molecules 19, 17279 (2014).

    Article  Google Scholar 

  27. 27.

    Schneider, J. et al. Understanding TiO2 photocatalysis: mechanisms and materials. Chem. Rev. 114, 9919–9986 (2014).

    CAS  Article  Google Scholar 

  28. 28.

    Marquez, L. A. & Dunford, H. B. Reaction of compound III of myeloperoxidase with ascorbic acid. J. Biol. Chem. 265, 6074–6078 (1990).

    CAS  Google Scholar 

  29. 29.

    Bilski, P., Reszka, K., Bilska, M. & Chignell, C. F. Oxidation of the spin trap 5,5-dimethyl-1-pyrroline N-oxide by singlet oxygen in aqueous solution. J. Am. Chem. Soc. 118, 1330–1338 (1996).

    CAS  Article  Google Scholar 

  30. 30.

    Hanaor, D. A. H. & Sorrell, C. C. Review of the anatase to rutile phase transformation. J. Mater. Sci. 46, 855–874 (2011).

    CAS  Article  Google Scholar 

  31. 31.

    Fitzpatrick, T. B., Amrhein, N. & Macheroux, P. Characterization of YqjM, an old yellow enzyme homolog from Bacillus subtilis involved in the oxidative stress response. J. Biol. Chem. 278, 19891–19897 (2003).

    CAS  Article  Google Scholar 

  32. 32.

    Hanefeld, U., Gardossi, L. & Magner, E. Understanding enzyme immobilisation. Chem. Soc. Rev. 38, 453–468 (2009).

    CAS  Article  Google Scholar 

  33. 33.

    Guo, Q. et al. How far can hydroxyl radicals travel? An electrochemical study based on a DNA mediated electron transfer process. Chem. Commun. 47, 11906–11908 (2011).

    CAS  Article  Google Scholar 

  34. 34.

    Peter, S. et al. Enzymatic one-pot conversion of cyclohexane into cyclohexanone: comparison of four fungal peroxygenases. J. Mol. Catal. B Enzym. 103, 47–51 (2014).

    CAS  Article  Google Scholar 

  35. 35.

    Kluge, M., Ullrich, R., Scheibner, K. & Hofrichter, M. Stereoselective benzylic hydroxylation of alkylbenzenes and epoxidation of styrene derivatives catalyzed by the peroxygenase of Agrocybe aegerita. Green Chem. 14, 440–446 (2012).

    CAS  Article  Google Scholar 

  36. 36.

    Peter, S. et al. Selective hydroxylation of alkanes by an extracellular fungal peroxygenase. FEBS J. 278, 3667–3675 (2011).

    CAS  Article  Google Scholar 

  37. 37.

    Sehl, T. et al. Two steps in one pot: enzyme cascade for the synthesis of nor(pseudo)ephedrine from inexpensive starting materials. Angew. Chem. Int. Ed. 52, 6772–6775 (2013).

    CAS  Article  Google Scholar 

  38. 38.

    Hailes, H. C. et al. Engineering stereoselectivity of ThDP-dependent enzymes. FEBS J. 280, 6374–6394 (2013).

    CAS  Article  Google Scholar 

  39. 39.

    Höhne, M., Schätzle, S., Jochens, H., Robins, K. & Bornscheuer, U. T. Rational assignment of key motifs for function guides in silico enzyme identification. Nat. Chem. Biol. 6, 807–813 (2010).

    Article  Google Scholar 

  40. 40.

    Hanson, R. L. et al. Preparation of (R)-amines from racemic amines with an (S)-amine transaminase from Bacillus megaterium. Adv. Synth. Catal. 350, 1367–1375 (2008).

    CAS  Article  Google Scholar 

  41. 41.

    Both, P. et al. Whole-cell biocatalysts for stereoselective C−H amination reactions. Angew. Chem. Int. Ed. 55, 1511–1513 (2016).

    CAS  Article  Google Scholar 

  42. 42.

    Fernández-Fueyo, E. et al. Chemoenzymatic halogenation of phenols by using the haloperoxidase from Curvularia inaequalis. ChemCatChem 7, 4035–4038 (2015).

    Article  Google Scholar 

  43. 43.

    van Schijndel, J., Vollenbroek, E. & Wever, R. The chloroperoxidase from the fungus Curvularia inaequalis: a novel vanadium enzyme. Biochim. Biophys. Acta 1161, 249–256 (1993).

    Article  Google Scholar 

  44. 44.

    Frank, A., Seel, C. J., Groll, M. & Gulder, T. Characterization of a cyanobacterial haloperoxidase and evaluation of its biocatalytic halogenation potential. ChemBioChem 17, 2028–2032 (2016).

    CAS  Article  Google Scholar 

  45. 45.

    Getrey, L., Krieg, T., Hollmann, F., Schrader, J. & Holtmann, D. Enzymatic halogenation of the phenolic monoterpenes thymol and carvacrol with chloroperoxidase. Green Chem. 16, 1104–1108 (2014).

    CAS  Article  Google Scholar 

  46. 46.

    Martin, D. J. et al. Highly efficient photocatalytic H2 evolution from water using visible light and structure-controlled graphitic carbon nitride. Angew. Chem. Int. Ed. 53, 9240–9245 (2014).

    CAS  Article  Google Scholar 

  47. 47.

    Zhang, W., Bariotaki, A., Smonou, I. & Hollmann, F. Visible-light-driven photooxidation of alcohols using surface-doped graphitic carbon nitride. Green Chem. 19, 2096–2100 (2017).

    CAS  Article  Google Scholar 

  48. 48.

    Liu, J. et al. Carbon nanodot surface modifications initiate highly efficient, stable catalysts for both oxygen evolution and reduction reactions. Adv. Energ. Mater. 6, 1502039 (2016).

    Article  Google Scholar 

  49. 49.

    Martindale, B. C. M., Hutton, G. A. M., Caputo, C. A. & Reisner, E. Solar hydrogen production using carbon quantum dots and a molecular nickel catalyst. J. Am. Chem. Soc. 137, 6018–6025 (2015).

    CAS  Article  Google Scholar 

  50. 50.

    Hutton, G. A. M. et al. Carbon dots as versatile photosensitizers for solar-driven catalysis with redox enzymes. J. Am. Chem. Soc. 138, 16722–16730 (2016).

    CAS  Article  Google Scholar 

  51. 51.

    Priebe, J. B. et al. Solar hydrogen production by plasmonic Au-TiO2 catalysts: impact of synthesis protocol and TiO2 phase on charge transfer efficiency and H2 evolution rates. ACS Catal. 5, 2137–2148 (2015).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

Financial support by the European Research Council (ERC Consolidator grant no. 648026) is gratefully acknowledged. The authors thank B. Norder for XRD, W. H. Evers for TEM and F. Hagen for EPR measurements. The authors also thank S. Schmidt for the preparation of benzaldehyde lyase, M. Pesic for the preparation of YqjM and T. Knaus for the preparation of ω-transaminases. F.G.M. received funding as an ERC Starting Grant Fellow (grant agreement 638271).

Author information

Affiliations

Authors

Contributions

W.Z., E.F.-F., Y.N., M.v.S. and J.G. performed the experimental work and analysed the results; R.R., R.W., F.G.M., D.R. and M.A. provided biocatalysts and participated in the planning and analysis of the experiments; W.Z. and F.H. conceived and designed the experiments. All authors co-wrote the manuscript.

Corresponding author

Correspondence to Frank Hollmann.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary information

Supplementary Methods, Supplementary Figures 1-37, Supplementary Tables 1-5, Supplementary References.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Fernández-Fueyo, E., Ni, Y. et al. Selective aerobic oxidation reactions using a combination of photocatalytic water oxidation and enzymatic oxyfunctionalizations. Nat Catal 1, 55–62 (2018). https://doi.org/10.1038/s41929-017-0001-5

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing