Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nanoscale spin rectifiers for harvesting ambient radiofrequency energy

Abstract

Radiofrequency harvesting using ambient wireless energy could be used to reduce the carbon footprint of electronic devices. However, ambient radiofrequency energy is weak (less than −20 dBm), and the performance of state-of-the-art radiofrequency rectifiers is restricted by thermodynamic limits and high-frequency parasitic impedance. Nanoscale spin rectifiers based on magnetic tunnel junctions have recently demonstrated high sensitivity, but suffer from a low a.c.-to-d.c. conversion efficiency (less than 1%). Here we report a sensitive spin rectifier rectenna that can harvest ambient radiofrequency signals between −62 and −20 dBm. We also develop an on-chip co-planar-waveguide-based spin rectifier array with a large zero-bias sensitivity (around 34,500 mV mW−1) and high efficiency (7.81%). The performance of our spin rectifier array relies on self-parametric excitation, driven by voltage-controlled magnetic anisotropy. We show that these spin rectifiers can be used to wirelessly power a sensor at a radiofrequency power of −27 dBm.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Rf energy harvesting using SRs.
Fig. 2: Performance of SR rectenna.
Fig. 3: Tuning of broadband and resonant rectification.
Fig. 4: Broadband low-power SR-based EHM.
Fig. 5: Comparison of rectification performance between Schottky diodes, SR array and SR rectenna.

Similar content being viewed by others

Data availability

Data that support the findings of this study are available from the corresponding author upon reasonable request.

Code availability

The codes that support the findings of this study are available from the corresponding author on reasonable request.

References

  1. Shaikh, F. K. & Zeadally, S. Energy harvesting in wireless sensor networks: a comprehensive review. Renew. Sust. Energ. Rev. 55, 1041–1054 (2016).

    Article  Google Scholar 

  2. Shaikh, F. K., Zeadally, S. & Exposito, E. Enabling technologies for green Internet of Things. IEEE Syst. J. 11, 983–994 (2015).

    Article  Google Scholar 

  3. Bito, J., Kim, S., Tentzeris, M. & Nikolaou, S. Ambient energy harvesting from 2-way talk-radio signals for ‘smart’ meter and display applications. In 2014 IEEE Antennas and Propagation Society International Symposium (APSURSI) 1353–1354 (IEEE, 2014).

  4. Fang, B. et al. Experimental demonstration of spintronic broadband microwave detectors and their capability for powering nanodevices. Phys. Rev. Appl. 11, 014022 (2019).

    Article  Google Scholar 

  5. Koohestani, M., Tissier, J. & Latrach, M. A miniaturized printed rectenna for wireless RF energy harvesting around 2.45 GHz. AEU Int. J. Electron. 127, 153478 (2020).

    Article  Google Scholar 

  6. Olgun, U., Chen, C.-C. & Volakis, J. L. Wireless power harvesting with planar rectennas for 2.45 GHz RFIDs. In 2010 URSI International Symposium on Electromagnetic Theory 329–331 (IEEE, 2010).

  7. Sharma, R. et al. Electrically connected spin-torque oscillators array for 2.4 GHz WiFi band transmission and energy harvesting. Nat. Commun. 12, 2924 (2021).

    Article  Google Scholar 

  8. Vallem, V., Sargolzaeiaval, Y., Ozturk, M., Lai, Y. C. & Dickey, M. D. Energy harvesting and storage with soft and stretchable materials. Adv. Mater. 33, 2004832 (2021).

    Article  Google Scholar 

  9. Iqbal, N., Masood, M., Nasir, A. A. & Qureshi, K. K. Review of contemporary energy harvesting techniques and their feasibility in wireless geophones. Int. J. Energy Res. 46, 5703–5730 (2022).

    Article  Google Scholar 

  10. Tran, L.-G., Cha, H.-K. & Park, W.-T. RF power harvesting: a review on designing methodologies and applications. Micro Nano Syst. Lett. 5, 14 (2017).

    Article  Google Scholar 

  11. IEEE Computer Society LAN/MAN Standards Committee. IEEE Standard for Information Technology—Telecommunications and Information Exchange between Systems—Local and Metropolitan Area Networks-Specific Requirements. Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. in IEEE Std 802.11 (IEEE, 2007). https://doi.org/10.1109/IEEESTD.2007.373646

  12. Hemour, S. & Wu, K. Radio-frequency rectifier for electromagnetic energy harvesting: development path and future outlook. Proc. IEEE 102, 1667–1691 (2014).

    Article  Google Scholar 

  13. Hemour, S. et al. Towards low-power high-efficiency RF and microwave energy harvesting. IEEE Trans. Microw. Theory Techn. 62, 965–976 (2014).

    Article  Google Scholar 

  14. Zhang, X. et al. Two-dimensional MoS2-enabled flexible rectenna for Wi-Fi-band wireless energy harvesting. Nature 566, 368–372 (2019).

    Article  Google Scholar 

  15. Strohm, K. M., Buechler, J. & Kasper, E. SIMMWIC rectennas on high-resistivity silicon and CMOS compatibility. IEEE Trans. Microw. Theory Techn. 46, 669–676 (1998).

    Article  Google Scholar 

  16. Suh, Y.-H. & Chang, K. A high-efficiency dual-frequency rectenna for 2.45- and 5.8-GHz wireless power transmission. IEEE Trans. Microw. Theory Techn. 50, 1784–1789 (2002).

    Article  Google Scholar 

  17. Lorenz, C. H. P. et al. Breaking the efficiency barrier for ambient microwave power harvesting with heterojunction backward tunnel diodes. IEEE Trans. Microw. Theory Techn. 63, 4544–4555 (2015).

    Article  Google Scholar 

  18. Cansiz, M., Altinel, D. & Kurt, G. K. Efficiency in RF energy harvesting systems: a comprehensive review. Energy 174, 292–309 (2019).

    Article  Google Scholar 

  19. Assogba, O., Mbodji, A. K. & Diallo, A. K. Efficiency in RF energy harvesting systems: a comprehensive review. In 2020 IEEE International Conference on Natural and Engineering Sciences for Sahels Sustainable Development—Impact of Big Data Application on Society and Environment (IBASE-BF) 1–10 (IEEE, 2020).

  20. Chen, Y.-S. & Chiu, C.-W. Maximum achievable power conversion efficiency obtained through an optimized rectenna structure for RF energy harvesting. IEEE Trans. Antennas Propag. 65, 2305–2317 (2017).

    Article  Google Scholar 

  21. Kim, J. & Jeong, J. Design of high efficiency rectifier at 2.45 GHz using parasitic canceling circuit. Microw. Opt. Technol. Lett. 55, 608–611 (2013).

    Article  Google Scholar 

  22. Mbombolo, S. E. F. & Park, C. W. An improved detector topology for a rectenna. In 2011 IEEE MTT-S International Microwave Workshop Series on Innovative Wireless Power Transmission: Technologies, Systems, and Applications 23–26 (IEEE, 2011).

  23. Olgun, U., Chen, C.-C. & Volakis, J. L. Investigation of rectenna array configurations for enhanced RF power harvesting. IEEE Antennas Wireless Propag. Lett. 10, 262–265 (2011).

    Article  Google Scholar 

  24. Shi, Y. et al. An efficient fractal rectenna for RF energy harvest at 2.45 GHz ISM band. Int. J. RF Microw. 28, e21424 (2018).

    Google Scholar 

  25. Wang, D. & Negra, R. Design of a rectifier for 2.45 GHz wireless power transmission. In 8th Conference on Ph.D. Research in Microelectronics & Electronics (PRIME 2012) 1–4 (VDE, 2012).

  26. Valenta, C. R. Fundamental limitations for Schottky diode RF energy harvesting. In 2015 IEEE International Conference on RFID Technology and Applications (RFID-TA) 188–193 (IEEE, 2015).

  27. Miwa, S. et al. Highly sensitive nanoscale spin-torque diode. Nat. Mater. 13, 50–56 (2014).

    Article  Google Scholar 

  28. Valenta, C. R. & Durgin, G. D. Harvesting wireless power: survey of energy-harvester conversion efficiency in far-field, wireless power transfer systems. IEEE Microw. Mag. 15, 108–120 (2014).

    Article  Google Scholar 

  29. Vera, G. A., Georgiadis, A., Collado, A. & Via, S. Design of a 2.45 GHz rectenna for electromagnetic (EM) energy scavenging. In 2010 IEEE Radio and Wireless Symposium (RWS) 61–64 (IEEE, 2010).

  30. Assimonis, S. D., Fusco, V., Georgiadis, A. & Samaras, T. Efficient and sensitive electrically small rectenna for ultra-low power RF energy harvesting. Sci. Rep. 8, 15038 (2018).

    Article  Google Scholar 

  31. Adami, S.-E. et al. A flexible 2.45-GHz power harvesting wristband with net system output from −24.3 dBm of RF power. IEEE Trans. Microw. Theory Techn. 66, 380–395 (2017).

    Article  Google Scholar 

  32. Song, C. et al. A high-efficiency broadband rectenna for ambient wireless energy harvesting. IEEE Trans. Antennas Propag. 63, 3486–3495 (2015).

    Article  MathSciNet  Google Scholar 

  33. Shen, S., Zhang, Y., Chiu, C.-Y. & Murch, R. A triple-band high-gain multibeam ambient RF energy harvesting system utilizing hybrid combining. IEEE Trans. Ind. Electron. 67, 9215–9226 (2019).

    Article  Google Scholar 

  34. P21XX Powerharvester Chipset Reference Design Evaluation Board (Powercast Corporation, 2018); https://powercastco.com/wp-content/uploads/2021/06/P21XXCSR-EVB-Datasheet-v2.1-1.pdf

  35. Finocchio, G. et al. Perspectives on spintronic diodes. Appl. Phys. Lett. 118, 160502 (2021).

    Article  Google Scholar 

  36. Tulapurkar, A. et al. Spin-torque diode effect in magnetic tunnel junctions. Nature 438, 339–342 (2005).

    Article  Google Scholar 

  37. Romera, M. et al. Vowel recognition with four coupled spin-torque nano-oscillators. Nature 563, 230–234 (2018).

    Article  Google Scholar 

  38. Fang, B. et al. Giant spin-torque diode sensitivity in the absence of bias magnetic field. Nat. Commun. 7, 11259 (2016).

    Article  Google Scholar 

  39. Zhang, L. et al. Ultrahigh detection sensitivity exceeding 105 V/W in spin-torque diode. Appl. Phys. Lett. 113, 102401 (2018).

    Article  Google Scholar 

  40. Jenkins, A. et al. Spin-torque resonant expulsion of the vortex core for an efficient radiofrequency detection scheme. Nat. Nanotechnol. 11, 360–364 (2016).

    Article  Google Scholar 

  41. Tsunegi, S. et al. Achievement of high diode sensitivity via spin torque-induced resonant expulsion in vortex magnetic tunnel junction. Appl. Phys. Express 11, 053001 (2018).

    Article  Google Scholar 

  42. Goto, M. et al. Uncooled sub-GHz spin bolometer driven by auto-oscillation. Nat. Commun. 12, 536 (2021).

    Article  Google Scholar 

  43. Leroux, N. et al. Radio-frequency multiply-and-accumulate operations with spintronic synapses. Phys. Rev. Appl. 15, 034067 (2021).

    Article  Google Scholar 

  44. Zhu, J. et al. Voltage-induced ferromagnetic resonance in magnetic tunnel junctions. Phys. Rev. Lett. 108, 197203 (2012).

    Article  Google Scholar 

  45. Zero-Bias Schottky Diode Detectors (Herotek, Inc., 2022); http://www.herotek.com/datasheets/pdf/Zero-Bias_Schottky_Diode_Detectors_100kHz-50Ghz.pdf

  46. Nozaki, T. et al. Electric-field-induced ferromagnetic resonance excitation in an ultrathin ferromagnetic metal layer. Nat. Phys. 8, 491–496 (2012).

    Article  Google Scholar 

  47. Scheike, T., Wen, Z., Sukegawa, H. & Mitani, S. 631% room temperature tunnel magnetoresistance with large oscillation effect in CoFe/MgO/CoFe(001) junctions. Appl. Phys. Lett. 122, 112404 (2023).

    Article  Google Scholar 

  48. Nozaki, T. et al. Highly efficient voltage control of spin and enhanced interfacial perpendicular magnetic anisotropy in iridium-doped Fe/MgO magnetic tunnel junctions. NPG Asia Mater. 9, e451 (2017).

    Article  Google Scholar 

  49. Zhang, L. et al. Enhanced broad-band radio frequency detection in nanoscale magnetic tunnel junction by interface engineering. ACS Appl. Mater. Interfaces 11, 29382–29387 (2019).

    Article  Google Scholar 

  50. Nitzan, S. H. et al. Self-induced parametric amplification arising from nonlinear elastic coupling in a micromechanical resonating disk gyroscope. Sci. Rep. 5, 9036 (2015).

    Article  Google Scholar 

  51. Rhodes, J.Jr. Parametric self-excitation of a belt into transverse vibration. J. Appl. Mech. 37, 1055–1060 (1970).

    Article  Google Scholar 

  52. Tomasello, R. et al. Low-frequency nonresonant rectification in spin diodes. Phys. Rev. Appl. 14, 024043 (2020).

    Article  Google Scholar 

  53. Sadagopan, K. R., Kang, J., Ramadass, Y. & Natarajan, A. A 960 pW co-integrated-antenna wireless energy harvester for WiFi backchannel wireless powering. In 2018 IEEE International Solid-State Circuits Conference (ISSCC) 136–138 (IEEE, 2018).

Download references

Acknowledgements

This work was funded by Samsung Electronics Co. Ltd. S.F. is funded by JSPS Kakenhi (24H00039 and 24H02235), MEXT X-NICS (JPJ011438), and JST-ASPIRE (JPMJAP2322). The work at the University of Messina was supported under project no. 101070287—SWAN-on-chip—HORIZON-CL4-2021-DIGITAL-EMERGING-01, project PRIN 2020LWPKH7 funded by the Italian Ministry of University and Research and by the PETASPIN association (https://www.petaspin.com/) and the MUR-PNRR project SAMOTHRACE (ECS00000022) by European Union (NextGeneration EU). R.S. acknowledges the Department of Science and Technology (DST) for an INSPIRE Faculty fellowship (IFA21-ENG 328).

Author information

Authors and Affiliations

Authors

Contributions

R.S. performed the measurements with the help of S.Z. and J.L. S.F., J.I. and B.J. deposited the stack and processed into devices. T.N. and Y.-X.G. provided help in designing the matched antenna and EHM testing. E.R. and A.G. performed the micromagnetic simulations and prepared the simulation figures. G.F. coordinated the simulation study. R.S., G.F. and H.Y. wrote the manuscript with input from S.F. H.Y. and H.O. initiated the project.

Corresponding author

Correspondence to Hyunsoo Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Electronics thanks Simon Hemour, Shingo Tamaru and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–14 and Figs. 1–15.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, R., Ngo, T., Raimondo, E. et al. Nanoscale spin rectifiers for harvesting ambient radiofrequency energy. Nat Electron 7, 653–661 (2024). https://doi.org/10.1038/s41928-024-01212-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41928-024-01212-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing