Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A microsized optical spectrometer based on an organic photodetector with an electrically tunable spectral response

Abstract

Miniaturized optical spectrometers could be of use in portable and wearable applications. Such devices have typically been based on arrays of photodetectors that provide distinct spectral responses or use complex miniaturized dispersive optics. However, these approaches often result in large centimetre-sized systems. Here we report a microsized optical spectrometer that is based on an optical-spacer-integrated photomultiplication-type organic photodetector with a bias-tunable spectral response. The approach allows the computational reconstruction of an incident light spectrum from photocurrents measured under a set of different bias voltages. The device, which has a footprint of 0.0004 cm2, is capable of broadband operation across the entire visible wavelength with a sub-5-nm resolution. To illustrate the capabilities of this approach, we fabricate an 8 × 8 spectroscopic sensor array that can be used for hyperspectral imaging.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of the microsized optical spectrometer.
Fig. 2: Optimization of active layer and top transparent contact.
Fig. 3: Characterization of photoresponse.
Fig. 4: Demonstration of spectrum reconstruction.
Fig. 5: Demonstration of spectroscopic applications and hyperspectral imaging.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Code availability

The codes that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Kulakowski, J. & D’Humières, B. Chip-size spectrometers drive spectroscopy towards consumer and medical applications. In Photonic Instrumentation Engineering VIII Vol. 11693 (eds Soskind, Y. & Busse, L. E.) (SPIE, 2021).

  2. Yang, Z., Albrow-Owen, T., Cai, W. & Hasan, T. Miniaturization of optical spectrometers. Science 371, eabe0722 (2021).

    Article  Google Scholar 

  3. Stuart, McGonigle & Willmott Hyperspectral imaging in environmental monitoring: a review of recent developments and technological advances in compact field deployable systems. Sensors 19, 3071 (2019).

    Article  Google Scholar 

  4. Yoon, J. Hyperspectral imaging for clinical applications. BioChip J. 16, 1–12 (2022).

    Article  Google Scholar 

  5. Kwa, T. A. & Wolffenbuttel, R. F. Integrated grating/detector array fabricated in silicon using micromachining techniques. Sens. Actuators A Phys. 31, 259–266 (1992).

    Article  Google Scholar 

  6. Yokino, T. et al. Grating-based ultra-compact SWNIR spectral sensor head developed through MOEMS technology. In MOEMS and Miniaturized Systems XVIII Vol. 10931 (eds Piyawattanametha, W., Park, Y.-H. & Zappe, H.) (SPIE, 2019).

  7. Kong, S. H., Correia, J. H., de Graaf, G., Bartek, M. & Wolffenbuttel, R. F. Integrated silicon microspectrometers. IEEE Instrum. Meas. Mag. 4, 34–38 (2001).

    Article  Google Scholar 

  8. Nitkowski, A., Chen, L. & Lipson, M. Cavity-enhanced on-chip absorption spectroscopy using microring resonators. Opt. Express 16, 11930–11936 (2008).

    Article  Google Scholar 

  9. Kita, D. M. et al. High-performance and scalable on-chip digital Fourier transform spectroscopy. Nat. Commun. 9, 4405 (2018).

    Article  Google Scholar 

  10. Pohl, D. et al. An integrated broadband spectrometer on thin-film lithium niobate. Nat. Photon. 14, 24–29 (2020).

    Article  Google Scholar 

  11. Yang, Z. et al. Single-nanowire spectrometers. Science 365, 1017–1020 (2019).

    Article  Google Scholar 

  12. Meng, J., Cadusch, J. J. & Crozier, K. B. Detector-only spectrometer based on structurally colored silicon nanowires and a reconstruction algorithm. Nano Lett. 20, 320–328 (2020).

    Article  Google Scholar 

  13. Bao, J. & Bawendi, M. G. A colloidal quantum dot spectrometer. Nature 523, 67–70 (2015).

    Article  Google Scholar 

  14. Zhu, X. et al. Broadband perovskite quantum dot spectrometer beyond human visual resolution. Light Sci. Appl. 9, 73 (2020).

    Article  Google Scholar 

  15. Zhang, W. et al. Deeply learned broadband encoding stochastic hyperspectral imaging. Light Sci. Appl. 10, 108 (2021).

    Article  Google Scholar 

  16. Yuan, S., Naveh, D., Watanabe, K., Taniguchi, T. & Xia, F. A wavelength-scale black phosphorus spectrometer. Nat. Photon. 15, 601–607 (2021).

    Article  Google Scholar 

  17. Yoon, H. H. et al. Miniaturized spectrometers with a tunable van der Waals junction. Science 378, 296–299 (2022).

    Article  Google Scholar 

  18. Deng, W. et al. Electrically tunable two-dimensional heterojunctions for miniaturized near-infrared spectrometers. Nat. Commun. 13, 4627 (2022).

    Article  Google Scholar 

  19. Wu, P., Zhang, T., Zhu, J., Palacios, T. & Kong, J. 2D materials for logic device scaling. Nat. Mater. 23, 23–25 (2024).

    Article  Google Scholar 

  20. Pierre, A., Gaikwad, A. & Arias, A. C. Charge-integrating organic heterojunction phototransistors for wide-dynamic-range image sensors. Nat. Photon. 11, 193–199 (2017).

    Article  Google Scholar 

  21. Lee, J. et al. Thin-film image sensors with a pinned photodiode structure. Nat. Electron. 6, 590–598 (2023).

    Article  Google Scholar 

  22. Huang, L., Luo, R., Liu, X. & Hao, X. Spectral imaging with deep learning. Light Sci. Appl. 11, 61 (2022).

    Article  Google Scholar 

  23. Gao, L., Qu, Y., Wang, L. & Yu, Z. Computational spectrometers enabled by nanophotonics and deep learning. Nanophotonics 11, 2507–2529 (2022).

    Article  Google Scholar 

  24. Zhang, J., Zhu, X. & Bao, J. Solver-informed neural networks for spectrum reconstruction of colloidal quantum dot spectrometers. Opt. Express 28, 33656–33672 (2020).

    Google Scholar 

  25. Miao, J. & Zhang, F. Recent progress on photomultiplication type organic photodetectors. Laser Photon. Rev. 13, 1800204 (2019).

    Article  Google Scholar 

  26. Wang, W. et al. Highly narrowband photomultiplication type organic photodetectors. Nano Lett. 17, 1995–2002 (2017).

    Article  Google Scholar 

  27. Lan, Z. et al. Near-infrared and visible light dual-mode organic photodetectors. Sci. Adv. 6, eaaw8065 (2020).

    Article  Google Scholar 

  28. Li, L., Zhang, F., Wang, W., Fang, Y. & Huang, J. Revealing the working mechanism of polymer photodetectors with ultra-high external quantum efficiency. Phys. Chem. Chem. Phys. 17, 30712–30720 (2015).

    Article  Google Scholar 

  29. Kim, J., Kang, M., Lee, S., So, C. & Chung, D. S. Interfacial electrostatic-interaction-enhanced photomultiplication for ultrahigh external quantum efficiency of organic photodiodes. Adv. Mater. 33, 2104689 (2021).

    Article  Google Scholar 

  30. Shi, L. et al. Atomic-level chemical reaction promoting external quantum efficiency of organic photomultiplication photodetector exceeding 108% for weak-light detection. Sci. Bull. 68, 928–937 (2023).

    Article  Google Scholar 

  31. Chen, M. et al. Mercury telluride quantum dot based phototransistor enabling high-sensitivity room-temperature photodetection at 2,000 nm. ACS Nano 11, 5614–5622 (2017).

    Article  Google Scholar 

  32. Xu, H. et al. Flexible organic/inorganic hybrid near‐infrared photoplethysmogram sensor for cardiovascular monitoring. Adv. Mater. 29, 1700975 (2017).

    Article  Google Scholar 

  33. Miao, J., Zhang, F., Du, M., Wang, W. & Fang, Y. Photomultiplication type organic photodetectors with broadband and narrowband response ability. Adv. Opt. Mater. 6, 1800001 (2018).

    Article  Google Scholar 

  34. Szarko, J. M. et al. Photovoltaic function and exciton/charge transfer dynamics in a highly efficient semiconducting copolymer. Adv. Funct. Mater. 24, 10–26 (2014).

    Article  Google Scholar 

  35. Lu, L. & Yu, L. Understanding low bandgap polymer PTB7 and optimizing polymer solar cells based on it. Adv. Mater. 26, 4413–4430 (2014).

    Article  Google Scholar 

  36. Wu, Y., Fukuda, K., Yokota, T. & Someya, T. A highly responsive organic image sensor based on a two‐terminal organic photodetector with photomultiplication. Adv. Mater. 31, 1903687 (2019).

    Article  Google Scholar 

  37. Yun, J. Ultrathin metal films for transparent electrodes of flexible optoelectronic devices. Adv. Funct. Mater. 27, 1606641 (2017).

    Article  Google Scholar 

  38. He, X., Yang, L. & He, S. Visible-blind and flexible metal-semiconductor-metal ultraviolet photodetectors based on sub-10-nm thick silver interdigital electrodes. Opt. Lett. 46, 4666–4669 (2021).

    Article  Google Scholar 

  39. Chen, Z. et al. Utilization of trapped optical modes for white perovskite light-emitting diodes with efficiency over 12%. Joule 5, 456–466 (2021).

    Article  Google Scholar 

  40. Wu, Z. et al. n-type water/alcohol-soluble naphthalene diimide-based conjugated polymers for high-performance polymer solar cells. J. Am. Chem. Soc. 138, 2004–2013 (2016).

    Article  Google Scholar 

  41. Maniyara, R. A. et al. Tunable plasmons in ultrathin metal films. Nat. Photon. 13, 328–333 (2019).

    Article  Google Scholar 

  42. Guo, L. et al. A single‐dot perovskite spectrometer. Adv. Mater. 34, 2200221 (2022).

    Article  Google Scholar 

  43. Zhang, S., Dong, Y., Fu, H., Huang, S. L. & Zhang, L. A spectral reconstruction algorithm of miniature spectrometer based on sparse optimization and dictionary learning. Sensors 18, 644 (2018).

    Article  Google Scholar 

  44. Kurokawa, U., Choi, B. II & Chang, C.-C. Filter-based miniature spectrometers: spectrum reconstruction using adaptive regularization. IEEE Sens. J. 11, 1556–1563 (2011).

    Article  Google Scholar 

  45. Šuleková, M., Hudák, A. & Smrčová, M. The determination of food dyes in vitamins by RP-HPLC. Molecules 21, 1368 (2016).

    Article  Google Scholar 

  46. König, T. A. F. et al. Electrically tunable plasmonic behavior of nanocube–polymer nanomaterials induced by a redox-active electrochromic polymer. ACS Nano 8, 6182–6192 (2014).

    Article  Google Scholar 

  47. Zhang, X., Qiu, J., Li, X., Zhao, J. & Liu, L. Complex refractive indices measurements of polymers in visible and near-infrared bands. Appl. Opt. 59, 2337–2344 (2020).

    Google Scholar 

  48. Haynes, W. M. (ed.) CRC Handbook of Chemistry and Physics (CRC Press, 2014).

  49. Hansen, P. C. Regularization tools version 4.0 for Matlab 7.3. Numer. Algor. 46, 189–194 (2007).

    Article  MathSciNet  Google Scholar 

  50. Grant, M. & Boyd, S. CVX v. 2.0 beta (CVX Research, Inc., 2013); http://cvxr.com/cvx

Download references

Acknowledgements

We thank Y. Zhou for the AFM measurement and helpful discussions. This project is supported by the General Research Fund from Hong Kong Research Grants Council (reference no. 14209620, to N.Z.) and the Excellent Young Scientists Fund from the National Natural Science Foundation of China (reference no. 62022004, to N.Z.).

Author information

Authors and Affiliations

Authors

Contributions

X.H. and N.Z. conceived the idea. X.H. conducted the optical simulation, device fabrication and characterization, and application demonstrations with assistance from Y.L., H.Y. and G.Z. L.K. and H.-L.Y. measured the refractive indices and suggested the use of PNDIT-F3N. X.H. and N.Z. wrote and revised the manuscript. N.Z. supervised the project. All the authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Ni Zhao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Electronics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–17 and Table 1.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, X., Li, Y., Yu, H. et al. A microsized optical spectrometer based on an organic photodetector with an electrically tunable spectral response. Nat Electron 7, 694–704 (2024). https://doi.org/10.1038/s41928-024-01199-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41928-024-01199-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing