Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Van der Waals opto-spintronics

Abstract

Van der Waals materials with long-range magnetic order show a range of correlated phenomena that could be of use in the development of optoelectronic and spintronic applications. Magnetically ordered van der Waals semiconductors with spin-polarized currents are, in particular, sensitive to external stimuli such as strain, electrostatic fields, magnetic fields and electromagnetic radiation. Their combination of two-dimensional magnetic order, semiconducting band structure and weak dielectric screening means that these materials could be used to create novel atomically thin opto-spintronic devices. Here we explore the development of van der Waals opto-spintronics. We examine the interplay between optical, magnetic and electronic excitations in van der Waals magnetic semiconductors, and explore the control of their magnetization via external stimuli. We consider fabrication and passivation strategies for the practical handling and design of opto-spintronic devices. We also explore potential opto-spintronic device architectures and applications, which include magnonics, quantum transduction, neuromorphic computing and non-volatile memory.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: CrI3 tunnelling devices for light helicity detection.
Fig. 2: Optically excited phonons and magnons in vdW magnetic semiconductors.
Fig. 3: External stimuli control of the magnetization in vdW magnets.
Fig. 4: Overcoming challenges in fabrication and charge transport characterization for vdW magnets.
Fig. 5: Opto-spintronic device applications based on vdW semiconductors.

Similar content being viewed by others

References

  1. Baibich, M. N. et al. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 61, 2472–2475 (1988). Paper on the discovery of giant magnetoresistance.

    Article  Google Scholar 

  2. Binasch, G., Grunberg, P., Saurenbach, F. & Zinn, W. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys. Rev. B 39, 4828–4830 (1989). Paper on the discovery of giant magnetoresistance.

    Article  Google Scholar 

  3. Dieny, B. et al. Opportunities and challenges for spintronics in the microelectronics industry. Nat. Electron. 3, 446–459 (2020).

    Article  Google Scholar 

  4. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    Article  Google Scholar 

  5. Sangwan, V. K. & Hersam, M. C. Electronic transport in two-dimensional materials. Annu. Rev. Phys. Chem. 69, 299–325 (2018).

    Article  Google Scholar 

  6. Gong, C. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 546, 265–269 (2017).

    Article  Google Scholar 

  7. Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546, 270–273 (2017). This paper reports 2D magnetism.

    Article  Google Scholar 

  8. Wang, Q. H. et al. The magnetic genome of two-dimensional van der Waals materials. ACS Nano 16, 6960–7079 (2022).

    Article  Google Scholar 

  9. Lin, X., Yang, W., Wang, K. L. & Zhao, W. Two-dimensional spintronics for low-power electronics. Nat. Electron. 2, 274–283 (2019).

    Article  Google Scholar 

  10. Yang, H. et al. Two-dimensional materials prospects for non-volatile spintronic memories. Nature 606, 663–673 (2022).

    Article  Google Scholar 

  11. Dey, P. & Roy, J. N. Spintronics: Fundamentals and Applications 163–183 (Springer, 2021).

  12. Sierra, J. F. et al. Van der Waals heterostructures for spintronics and opto-spintronics. Nat. Nanotechnol. 16, 856–868 (2021).

    Article  Google Scholar 

  13. Zhong, D. et al. Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics. Sci. Adv. 3, e1603113 (2017).

    Article  Google Scholar 

  14. Song, T. et al. Spin photovoltaic effect in magnetic van der Waals heterostructures. Sci. Adv. 7, eabg8094 (2021). This paper reports the spin photovoltaic effect in a vdW heterostructure for light helicity detection.

    Article  Google Scholar 

  15. Cheng, X. et al. Light helicity detector based on 2D magnetic semiconductor CrI3. Nat. Commun. 12, 6874 (2021). This paper reports the fabrication of vdW opto-spintronic devices.

    Article  Google Scholar 

  16. Chen, J. et al. Optical helicity and polarization dependent NIR negative photocurrent in the 2D magnetic semiconductor CrI3. Adv. Opt. Mater. 12, 2301488 (2023).

    Article  Google Scholar 

  17. Nemec, P., Fiebig, M., Kampfrath, T. & Kimel, A. V. Antiferromagnetic opto-spintronics. Nat. Phys. 14, 229–241 (2018).

    Article  Google Scholar 

  18. Hwangbo, K. et al. Highly anisotropic excitons and multiple phonon bound states in a van der Waals antiferromagnetic insulator. Nat. Nanotechnol. 16, 655–660 (2021).

    Article  Google Scholar 

  19. Zhang, Q. et al. Observation of giant optical linear dichroism in a zigzag antiferromagnet FePS3. Nano Lett. 21, 6938–6945 (2021).

    Article  Google Scholar 

  20. Sun, Z. et al. Giant nonreciprocal second-harmonic generation from antiferromagnetic bilayer CrI3. Nature 572, 497–501 (2019).

    Article  Google Scholar 

  21. Lee, K. et al. Magnetic order and symmetry in the 2D semiconductor CrSBr. Nano Lett. 21, 3511–3517 (2021).

    Article  Google Scholar 

  22. Song, Q. et al. Evidence for a single-layer van der Waals multiferroic. Nature 602, 601–605 (2022). This paper reports multiferroicity in ultrathin vdW materials.

    Article  Google Scholar 

  23. Fumega, A. O. & Lado, J. L. Microscopic origin of multiferroic order in monolayer NiI2. 2D Mater. 9, 025010 (2022).

    Article  Google Scholar 

  24. Jin, W. et al. Observation of the polaronic character of excitons in a two-dimensional semiconducting magnet CrI3. Nat. Commun. 11, 4780 (2020).

    Article  Google Scholar 

  25. Seyler, K. L. et al. Ligand-field helical luminescence in a 2D ferromagnetic insulator. Nat. Phys. 14, 277–281 (2018).

    Article  Google Scholar 

  26. Grzeszczyk, M. et al. Strongly correlated exciton-magnetization system for optical spin pumping in CrBr3 and CrI3. Adv. Mater. 35, e2209513 (2023).

    Article  Google Scholar 

  27. Wilson, N. P. et al. Interlayer electronic coupling on demand in a 2D magnetic semiconductor. Nat. Mater. 20, 1657–1662 (2021).

    Article  Google Scholar 

  28. Wang, Y. et al. Magnetic anisotropy and electric field induced magnetic phase transition in the van der Waals antiferromagnet CrSBr. Phys. Rev. B 108, 054401 (2023).

    Article  Google Scholar 

  29. Kang, S. et al. Coherent many-body exciton in van der Waals antiferromagnet NiPS3. Nature 583, 785–789 (2020). This paper reports ultranarrow photoluminescence from a low-dimensional antiferromagnet.

    Article  Google Scholar 

  30. Son, S. et al. Multiferroic-enabled magnetic-excitons in 2D quantum-entangled van der Waals antiferromagnet NiI2. Adv. Mater. 34, 2109144 (2021).

    Article  Google Scholar 

  31. Li, X. et al. Ultrafast spontaneous localization of a Jahn–Teller exciton polaron in two-dimensional semiconducting CrI3 by symmetry breaking. Nano Lett. 22, 8755–8762 (2022).

    Article  Google Scholar 

  32. Ergecen, E. et al. Magnetically brightened dark electron-phonon bound states in a van der Waals antiferromagnet. Nat. Commun. 13, 98 (2022).

    Article  Google Scholar 

  33. Jin, W. et al. Raman fingerprint of two terahertz spin wave branches in a two-dimensional honeycomb Ising ferromagnet. Nat. Commun. 9, 5122 (2018).

    Article  Google Scholar 

  34. Cenker, J. et al. Direct observation of two-dimensional magnons in atomically thin CrI3. Nat. Phys. 17, 20–25 (2021).

  35. Mertens, F. et al. Ultrafast coherent THz lattice dynamics coupled to spins in the van der Waals antiferromagnet FePS3. Adv. Mater. 35, 2208355 (2022).

    Article  Google Scholar 

  36. Bae, Y. J. et al. Exciton-coupled coherent magnons in a 2D semiconductor. Nature 609, 282–286 (2022). This paper reports efficient coupling between excitons and magnons.

    Article  Google Scholar 

  37. Diederich, G. M. et al. Tunable interaction between excitons and hybridized magnons in a layered semiconductor. Nat. Nanotechnol. 18, 23–28 (2022).

    Article  Google Scholar 

  38. Jiang, S., Shan, J. & Mak, K. F. Electric-field switching of two-dimensional van der Waals magnets. Nat. Mater. 17, 406–410 (2018).

    Article  Google Scholar 

  39. Jiang, S. et al. Controlling magnetism in 2D CrI3 by electrostatic doping. Nat. Nanotechnol. 13, 549–553 (2018).

    Article  Google Scholar 

  40. Verzhbitskiy, I. A. et al. Controlling the magnetic anisotropy in Cr2Ge2Te6 by electrostatic gating. Nat. Electron. 3, 460–465 (2020).

    Article  Google Scholar 

  41. Bergeron, H., Lebedev, D. & Hersam, M. C. Polymorphism in post-dichalcogenide two-dimensional materials. Chem. Rev. 121, 2713–2775 (2021).

    Article  Google Scholar 

  42. Li, T. et al. Pressure-controlled interlayer magnetism in atomically thin CrI3. Nat. Mater. 18, 1303–1308 (2019).

    Article  Google Scholar 

  43. Song, T. et al. Switching 2D magnetic states via pressure tuning of layer stacking. Nat. Mater. 18, 1298–1302 (2019).

    Article  Google Scholar 

  44. Cenker, J. et al. Reversible strain-induced magnetic phase transition in a van der Waals magnet. Nat. Nanotechnol. 17, 256–261 (2022).

    Article  Google Scholar 

  45. Zhang, P. et al. All-optical switching of magnetization in atomically thin CrI3. Nat. Mater. 21, 1373–1378 (2022). This paper reports optical control of a low-dimensional magnet.

    Article  Google Scholar 

  46. Padmanabhan, P. et al. Coherent helicity-dependent spin–phonon oscillations in the ferromagnetic van der Waals crystal CrI3. Nat. Commun. 13, 4473 (2022).

    Article  Google Scholar 

  47. Afanasiev, D. et al. Controlling the anisotropy of a van der Waals antiferromagnet with light. Sci. Adv. 7, eabf3096 (2021).

    Article  Google Scholar 

  48. Belvin, C. A. et al. Exciton-driven antiferromagnetic metal in a correlated van der Waals insulator. Nat. Commun. 12, 4837 (2021).

    Article  Google Scholar 

  49. Deng, Y. et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature 563, 94–99 (2018).

    Article  Google Scholar 

  50. Huang, Y. et al. Universal mechanical exfoliation of large-area 2D crystals. Nat. Commun. 11, 2453 (2020).

    Article  Google Scholar 

  51. Lebedev, D. et al. Electrical interrogation of thickness-dependent multiferroic phase transitions in the 2D antiferromagnetic semiconductor NiI2. Adv. Funct. Mat. 33, 2212568 (2023).

    Article  Google Scholar 

  52. Telford, E. J. et al. Layered antiferromagnetism induces large negative magnetoresistance in the van der Waals semiconductor CrSBr. Adv. Mater. 32, e2003240 (2020).

    Article  Google Scholar 

  53. Wu, F. et al. Quasi-1D electronic transport in a 2D magnetic semiconductor. Adv. Mater. 34, e2109759 (2022).

    Article  Google Scholar 

  54. Telford, E. J. et al. Coupling between magnetic order and charge transport in a two-dimensional magnetic semiconductor. Nat. Mater. 21, 754–760 (2022).

    Article  Google Scholar 

  55. Kuo, C. T. et al. Exfoliation and Raman spectroscopic fingerprint of few-layer NiPS3 van der Waals crystals. Sci. Rep. 6, 20904 (2016).

    Article  Google Scholar 

  56. Shcherbakov, D. et al. Raman spectroscopy, photocatalytic degradation, and stabilization of atomically thin chromium tri-iodide. Nano Lett. 18, 4214–4219 (2018).

    Article  Google Scholar 

  57. Gish, J. T. et al. Ambient-stable two-dimensional CrI3 via organic-inorganic encapsulation. ACS Nano 15, 10659–10667 (2021).

    Article  Google Scholar 

  58. Wells, S. A. et al. Suppressing ambient degradation of exfoliated inse nanosheet devices via seeded atomic layer deposition encapsulation. Nano Lett. 18, 7876–7882 (2018).

    Article  Google Scholar 

  59. Alaboson, J. M. P. et al. Seeding atomic layer deposition of high-k dielectrics on epitaxial graphene with organic self-assembled monolayers. ACS Nano 5, 5223–5232 (2011).

    Article  Google Scholar 

  60. Wang, Z. et al. Very large tunneling magnetoresistance in layered magnetic semiconductor CrI3. Nat. Commun. 9, 2516 (2018).

    Article  Google Scholar 

  61. Song, T. et al. Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures. Science 360, 1214–1218 (2018).

    Article  Google Scholar 

  62. Jiang, S. et al. Spin tunnel field-effect transistors based on two-dimensional van der Waals heterostructures. Nat. Electron. 2, 159–163 (2019).

    Article  Google Scholar 

  63. Wang, Z. et al. Electric-field control of magnetism in a few-layered van der Waals ferromagnetic semiconductor. Nat. Nanotechnol. 13, 554–559 (2018).

    Article  Google Scholar 

  64. Liu, Y. et al. Low-resistance metal contacts to encapsulated semiconductor monolayers with long transfer length. Nat. Electron. 5, 579–585 (2022).

    Article  Google Scholar 

  65. Liu, L. et al. Transferred van der Waals metal electrodes for sub-1-nm MoS2 vertical transistors. Nat. Electron. 4, 342–347 (2021).

    Article  Google Scholar 

  66. Liu, Y. et al. Approaching the Schottky–Mott limit in van der Waals metal-semiconductor junctions. Nature 557, 696–700 (2018). This paper reports improved device performance using transferred contacts.

    Article  Google Scholar 

  67. Li, W. et al. Uniform and ultrathin high-κ gate dielectrics for two-dimensional electronic devices. Nat. Electron. 2, 563–571 (2019).

    Article  Google Scholar 

  68. Yang, A. J. et al. Van der Waals integration of high-κ perovskite oxides and two-dimensional semiconductors. Nat. Electron. 5, 233–240 (2022).

    Article  Google Scholar 

  69. Saito, H. et al. Magnetic and transport properties of III–V diluted magnetic semiconductor Ga1xCrxAs. J. Appl. Phys. 89, 7392–7394 (2001).

    Article  Google Scholar 

  70. Ou, S. L., Liu, H. R., Wang, S. Y. & Wuu, D. S. Co-doped ZnO dilute magnetic semiconductor thin films by pulsed laser deposition: excellent transmittance, low resistivity and high mobility. J. Alloy. Compd. 663, 107–115 (2016).

    Article  Google Scholar 

  71. Hayashi, T., Tanaka, M., Nishinaga, T. & Shimada, H. Magnetic and magnetotransport properties of new III–V diluted magnetic semiconductors: GaMnAs. J. Appl. Phys. 81, 4865–4867 (1997).

    Article  Google Scholar 

  72. Yang, X. et al. K and Mn co-doped BaCd2As2: a hexagonal structured bulk diluted magnetic semiconductor with large magnetoresistance. J. Appl. Phys. 114, 223905 (2013).

    Article  Google Scholar 

  73. Hayakawa, J. et al. Effect of high annealing temperature on giant tunnel magnetoresistance ratio of CoFeB/MgO/CoFeB magnetic tunnel junctions. Appl. Phys. Lett. 89, 232510 (2006).

    Article  Google Scholar 

  74. Wu, F. et al. Gate-controlled magnetotransport and electrostatic modulation of magnetism in 2D magnetic semiconductor CrPS4. Adv. Mater. 35, e2211653 (2023).

    Article  Google Scholar 

  75. Huang, B. et al. Electrical control of 2D magnetism in bilayer CrI3. Nat. Nanotechnol. 13, 544–548 (2018).

    Article  Google Scholar 

  76. Wang, C. et al. Monolayer atomic crystal molecular superlattices. Nature 555, 231–236 (2018).

    Article  Google Scholar 

  77. Lam, D. et al. Liquid-phase exfoliation of magnetically and optoelectronically active ruthenium trichloride nanosheets. ACS Nano 16, 11315–11324 (2022).

    Article  Google Scholar 

  78. Du, L. et al. Moire photonics and optoelectronics. Science 379, eadg0014 (2023).

    Article  Google Scholar 

  79. Deng, B. C. et al. Strong mid-infrared photoresponse in small-twist-angle bilayer graphene. Nat. Photon. 14, 549–553 (2020).

    Article  Google Scholar 

  80. Yang, J. et al. Spectroscopy signatures of electron correlations in a trilayer graphene/hBN moire superlattice. Science 375, 1295–1299 (2022).

    Article  Google Scholar 

  81. Ma, C. et al. Intelligent infrared sensing enabled by tunable moire quantum geometry. Nature 604, 266–272 (2022).

    Article  Google Scholar 

  82. Han, R., Jiang, Z. & Yan, Y. Prediction of novel 2D intrinsic ferromagnetic materials with high Curie temperature and large perpendicular magnetic anisotropy. J. Phys. Chem. C 124, 7956–7964 (2020).

    Article  Google Scholar 

  83. Fiederling, R. et al. Injection and detection of a spin-polarized current in a light-emitting diode. Nature 402, 787–790 (1999).

    Article  Google Scholar 

  84. Lien, D. H. et al. Large-area and bright pulsed electroluminescence in monolayer semiconductors. Nat. Commun. 9, 1229 (2018).

    Article  Google Scholar 

  85. Zultak, J. et al. Ultra-thin van der Waals crystals as semiconductor quantum wells. Nat. Commun. 11, 125 (2020).

    Article  Google Scholar 

  86. Li, J. X. et al. Electric control of valley polarization in monolayer WSe2 using a van der Waals magnet. Nat. Nanotechnol. 17, 721–728 (2022).

    Article  Google Scholar 

  87. Beaurepaire, E., Merle, J., Daunois, A. & Bigot, J. Ultrafast spin dynamics in ferromagnetic nickel. Phys. Rev. Lett. 76, 4250–4253 (1996).

    Article  Google Scholar 

  88. Stanciu, C. D. et al. All-optical magnetic recording with circularly polarized light. Phys. Rev. Lett. 99, 047601 (2007).

    Article  Google Scholar 

  89. Baierl, S. et al. Nonlinear spin control by terahertz-driven anisotropy fields. Nat. Photon. 10, 715–718 (2016).

    Article  Google Scholar 

  90. Stupakiewicz, A. et al. Ultrafast nonthermal photo-magnetic recording in a transparent medium. Nature 542, 71–74 (2017).

    Article  Google Scholar 

  91. Hu, G. et al. Antisymmetric magnetoresistance in a van der Waals antiferromagnetic/ferromagnetic layered MnPS3/Fe3GeTe2 stacking heterostructure. ACS Nano 14, 12037–12044 (2020).

    Article  Google Scholar 

  92. Chen, X. et al. Observation of the antiferromagnetic spin Hall effect. Nat. Mater. 20, 800–804 (2021).

    Article  Google Scholar 

  93. Wang, X. R. Anomalous spin Hall and inverse spin Hall effects in magnetic systems. Commun. Phys. 4, 55 (2021).

    Article  Google Scholar 

  94. Kriegner, D. et al. Multiple-stable anisotropic magnetoresistance memory in antiferromagnetic MnTe. Nat. Commun. 7, 11623 (2016).

    Article  Google Scholar 

  95. Chumak, A. V., Serga, A. A. & Hillebrands, B. Magnonic crystals for data processing. J. Phys. D 50, 244001 (2017).

    Article  Google Scholar 

  96. Bossini, D. et al. Macrospin dynamics in antiferromagnets triggered by sub-20 femtosecond injection of nanomagnons. Nat. Commun. 7, 10645 (2016).

    Article  Google Scholar 

  97. Wei, X. Y. et al. Giant magnon spin conductivity in ultrathin yttrium iron garnet films. Nat. Mater. 21, 1352–1356 (2022).

    Article  Google Scholar 

  98. Cornelissen, L. J. et al. Long-distance transport of magnon spin information in a magnetic insulator at room temperature. Nat. Phys. 11, 1022–1026 (2015).

    Article  Google Scholar 

  99. Xing, W. et al. Magnon transport in quasi-two-dimensional van der Waals antiferromagnets. Phys. Rev. X 9, 011026 (2019).

    Google Scholar 

  100. Zhang, X. X. et al. Gate-tunable spin waves in antiferromagnetic atomic bilayers. Nat. Mater. 19, 838–842 (2020).

    Article  Google Scholar 

  101. Vaclavkova, D. et al. Magnon polarons in the van der Waals antiferromagnet FePS3. Phys. Rev. B 104, 134437 (2021).

    Article  Google Scholar 

  102. Wang, Q. et al. A magnonic directional coupler for integrated magnonic half-adders. Nat. Electron. 3, 765–774 (2020).

    Article  Google Scholar 

  103. Wang, Q. et al. A nonlinear magnonic nano-ring resonator. npj Comput. Mater. 7, 192 (2021).

    Article  Google Scholar 

  104. Kurenkov, A., Fukami, S. & Ohno, H. Neuromorphic computing with antiferromagnetic spintronics. J. Appl. Phys. 128, 010902 (2020).

    Article  Google Scholar 

  105. Shainline, J. M. Optoelectronic intelligence. Appl. Phys. Lett. 118, 160501 (2021).

    Article  Google Scholar 

  106. Feng, X., Liu, X. & Ang, K.-W. 2D photonic memristor beyond graphene: progress and prospects. Nanophotonics 9, 1579–1599 (2020).

    Article  Google Scholar 

  107. Dayen, J.-F. et al. Two-dimensional van der Waals spinterfaces and magnetic-interfaces. Appl. Phys. Rev. 7, 011303 (2020).

    Article  Google Scholar 

  108. Kim, H. H. et al. Magneto-memristive switching in a 2D layer antiferromagnet. Adv. Mater. 32, e1905433 (2020).

    Article  Google Scholar 

  109. Borders, W. A. et al. Integer factorization using stochastic magnetic tunnel junctions. Nature 573, 390–393 (2019).

    Article  Google Scholar 

  110. Ababei, R. V. et al. Neuromorphic computation with a single magnetic domain wall. Sci. Rep. 11, 15587 (2021).

    Article  Google Scholar 

  111. Sangwan, V. K., Liu, S. E., Trivedi, A. R. & Hersam, M. C. Two-dimensional materials for bio-realistic neuronal computing networks. Matter 5, 4133–4152 (2022).

    Article  Google Scholar 

  112. Rajib, M. M. et al. Skyrmion based energy-efficient straintronic physical reservoir computing. Neuromorph. Comput. Eng. 2, 044011 (2022).

    Article  Google Scholar 

  113. Awschalom, D. D. et al. Quantum engineering with hybrid magnonic systems and materials. IEEE Trans. Quantum Eng. 2, 1–36 (2021).

  114. Lachance-Quirion, D. et al. Hybrid quantum systems based on magnonics. Appl. Phys. Express 12, 070101 (2019).

    Article  Google Scholar 

  115. Li, Y. et al. Hybrid magnonics: physics, circuits, and applications for coherent information processing. J. Appl. Phys. 128, 130902 (2020).

    Article  Google Scholar 

  116. Li, Y. et al. Strong coupling between magnons and microwave photons in on-chip ferromagnet-superconductor thin-film devices. Phys. Rev. Lett. 123, 107701 (2019).

    Article  Google Scholar 

  117. Hou, J. T. & Liu, L. Strong coupling between microwave photons and nanomagnet magnons. Phys. Rev. Lett. 123, 107702 (2019).

    Article  Google Scholar 

  118. MacNeill, D. et al. Gigahertz frequency antiferromagnetic resonance and strong magnon-magnon coupling in the layered crystal CrCl3. Phys. Rev. Lett. 123, 047204 (2019).

    Article  Google Scholar 

  119. Spaldin, N. A. & Ramesh, R. Advances in magnetoelectric multiferroics. Nat. Mater. 18, 203–212 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Science Foundation Division of Materials Research (NSF DMR-2004420) and the Department of Energy (DOE DE-SC0019356).

Author information

Authors and Affiliations

Authors

Contributions

J.T.G., D.L., T.W.S. and V.K.S. performed the literature review and contributed to the initial draft of the paper. M.C.H. oversaw the research and performed the final editing of the paper.

Corresponding author

Correspondence to Mark C. Hersam.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Electronics thanks Lun Dai, Yinong Zhang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gish, J.T., Lebedev, D., Song, T.W. et al. Van der Waals opto-spintronics. Nat Electron 7, 336–347 (2024). https://doi.org/10.1038/s41928-024-01167-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41928-024-01167-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing