
Nature Electronics

nature electronics

https://doi.org/10.1038/s41928-024-01157-5Article

Low-cost and efficient prediction hardware
for tabular data using tiny classifier circuits

Konstantinos Iordanou   1 , Timothy Atkinson1, Emre Ozer   2, Jedrzej Kufel2,
Grace Aligada2, John Biggs   2, Gavin Brown   1 & Mikel Luján1

A typical machine learning development cycle maximizes performance
during model training and then minimizes the memory and area footprint of
the trained model for deployment on processing cores, graphics processing
units, microcontrollers or custom hardware accelerators. However, this
becomes increasingly difficult as machine learning models grow larger and
more complex. Here we report a methodology for automatically generating
predictor circuits for the classification of tabular data. The approach offers
comparable prediction performance to conventional machine learning
techniques as substantially fewer hardware resources and power are used.
We use an evolutionary algorithm to search over the space of logic gates
and automatically generate a classifier circuit with maximized training
prediction accuracy, which consists of no more than 300 logic gates. When
simulated as a silicon chip, our tiny classifiers use 8–18 times less area and
4–8 times less power than the best-performing machine learning baseline.
When implemented as a low-cost chip on a flexible substrate, they occupy
10–75 times less area, consume 13–75 times less power and have 6 times
better yield than the most hardware-efficient ML baseline.

Deep neural networks (DNNs) can now offer near-human—or better
than human—accuracy in a range of applications. Originally based on
convolutional neural networks and harnessing the availability of large,
labelled datasets of images, their application has expanded to many
other tasks and associated neural architectures, such as recurrent
and transformers for natural language processing. The large datasets
used now are mainly images, audio or text, which can be characterized
as homogeneous data. This progress, and the existence of common
computational kernels across different kinds of DNN, has led to the
development of a range of hardware accelerators for inference as well
as training of DNNs. In both scenarios, the most common approach for
these accelerators is to be programmable hardware with specialized
datatypes and computations, rather than a task-specific circuit. As
DNNs have evolved, their computation has evolved from dense tensor
operations towards increased sparsity.

Currently, the training and execution of a machine learning (ML)
model is typically separated from the design and optimization of the
hardware accelerator, or—at best—some co-design happens. However,

both development activities involve optimization processes. Thus, a
potential approach could be to develop a supervised learning tech-
nique that takes tabular data as the input and generates a circuit rep-
resentation for classification that behaves like an ML model.

In this Article, we report a methodology—termed auto tiny clas-
sifiers—to automatically generate classification circuits directly from
tabular data. In contrast to homogeneous data (image and text), we
focus on tabular data that can, for example, combine numerical and
categorical data (heterogeneous). DNNs excel at capturing the spa-
tial or semantic relationship in images or speech data. However, for
tabular data, the correlation among the features is weaker, and the
features have no intrinsic positional information. Hence, tabular data
are an active research area for DNNs1–4. Such heterogeneous data are
ubiquitous2, and have a range of practical applications5–7. They also
often exist in resource-limited scenarios suited to low-power ML, also
known as tinyML8–11.

Our approach offers an alternative methodology to current ML
and deep learning methods for making predictions from tabular data

Received: 3 April 2023

Accepted: 22 March 2024

Published online: xx xx xxxx

 Check for updates

1Department of Computer Science, University of Manchester, Manchester, UK. 2Pragmatic Semiconductor, Cambridge, UK.
 e-mail: konstantinos.iordanou@manchester.ac.uk

http://www.nature.com/natureelectronics
https://doi.org/10.1038/s41928-024-01157-5
http://orcid.org/0000-0001-9568-2638
http://orcid.org/0000-0001-8285-1551
http://orcid.org/0000-0003-4188-9064
http://orcid.org/0000-0003-2261-9018
http://crossmark.crossref.org/dialog/?doi=10.1038/s41928-024-01157-5&domain=pdf
mailto:konstantinos.iordanou@manchester.ac.uk

Nature Electronics

Article https://doi.org/10.1038/s41928-024-01157-5

NAIS (Fig. 2c) selects a specific neural network and a known neural net-
work accelerator to iterate over the space, identifying the best param-
eters from the hardware pool to maximize the prediction accuracy.

On the other hand, our proposed methodology automatically
searches the classifier circuit space using an evolutionary algorithm
(Fig. 2d). During circuit evolution, the generated circuit does not map to
any predefined ML model or a known hardware circuit. At the end of the
search-space cycle, the output is a sea of gates (a combinational circuit),
which is autotranslated into RTL. These circuits are already verified
during the fitness phase of the evolutionary algorithm. Our methodol-
ogy is not a co-design approach; therefore, there are no assumptions
about any ML models or pre-determined hardware accelerator pools.

Several methods have been proposed for supervised classification
on tabular data. Two popular modern approaches are gradient-boosted
decision trees, such as XGBoost39 and CatBoost40, and deep learning
architectures, such as TabNet by Google1. Recent work on DNNs4 dem-
onstrates that multilayer perceptrons (MLPs) can be made competitive
with state-of-the-art gradient-boosted decision trees when the dimen-
sions of the MLP architecture are suitably optimized. In addition, these
optimized MLPs can also provide better accuracy than TabNet1.

Automatically evolving classifier circuits
The fact that the features of tabular data are weakly correlated allows
the conversion of the input-to-output prediction problem, into a sim-
ple representation of logic gates making predictions. We adapt the
evolving graphs by graph programming (EGGP) algorithm24 as the
evolutionary algorithm to generate the classification circuits. EGGP
follows the consensus of using the simple 1 + λ evolutionary technique41,
particularly for circuit synthesis32,33. The algorithm mimics the neutral
drift of DNA42 and consists of the following steps:

 1. Generate a random initial parent solution S, and evaluate its fit-
ness fS.

 2. While not terminated do:
 (a) Generate λ children C1…Cλ by mutating S.
 (b) Evaluate the children’s fitness values f1…fλ.
 (c) If any child Ci has fi ≥ fS, then replace the parent S = Ci, fS = fi.

The point at which multiple children satisfy this condition,
the child with the highest fitness is chosen; tie-breaks are de-
termined at random.

In the algorithm, functional programs such as digital circuits are
represented as graphs consisting of:

•	 A set of input nodes VI, each node of which uniquely represents a
program input.

•	 A set of function nodes VF, each node of which represents a specific
function applied to its inputs.

•	 A set of output nodes VO, each node of which uniquely represents
a program output.

•	 A set of edges E connecting function and output nodes to their
respective inputs.

with two key benefits. First, our Boolean function representation is oth-
erwise known in ML as a decision tree and thus inherits the favourable
properties of this representation; recent studies have indicated that
decision trees outperform deep learning on tabular data4,12. Second,
our evolutionary scheme can bypass the local minima that may trap a
traditional gradient-based tree boosting technique.

Our tiny classifier circuits are composed of only a few hundred
logic gates and can match the prediction accuracy of the state-of-the-art
ML classifiers. We describe a toolflow that generates tiny classifiers as
application-specific integrated circuit (ASIC) blocks. We then provide
synthesis results of the tiny classifiers and ML baseline designs target-
ing conventional silicon technology. We also implement the tiny clas-
sifiers and ML baselines as flexible integrated circuits (FlexICs) and
fabricate them on flexible substrates (polyimide).

The tiny classifiers could be used in a variety of applications. They
could, for example, be used as triggering circuits within system on
chips13, where the low-power state of a system on chip is maintained
whereas the tiny classifiers are the always-on circuits. Hardwired tiny
classifiers could also be used in fast-moving consumer goods applica-
tions such as smart packaging, where ML models on FlexICs14–17 can
make in situ classifications9,18–20. Smart packages can be equipped with
integrated circuits (ICs) using low-cost flexible electronics technol-
ogy14–16. FlexICs are, in particular, less costly than silicon-based ICs,
offering low-cost circuit customization17. Likewise, they are of potential
value in low-cost near-sensor computing systems21,22 where a compute
block is closely coupled with a sensor, and the sensor data are turned
into knowledge using inference at the source. The programmability of
classifier circuits is also not a requirement for smart packages due to
short fast-moving consumer goods product lifetimes (days or weeks,
for example), where the products, along with their packages, will be
disposed/recycled after use.

Graph-based genetic programming
The general graph-based genetic programming approach23–26 follows
a traditional evolutionary methodology (Fig. 1). A set of possible solu-
tions (the ‘population’) are recombined (‘crossover’) and/or perturbed
(‘mutation’). The new, candidate solutions (the ‘children’) are then
evaluated for their performance on the given task (giving a score,
typically referred to as the ‘fitness’). The best-performing children
form the new population in the next iteration. Under the assumption
that the problem has some sort of local continuity, such that children
generated by performing crossover or mutation on high-quality solu-
tions are more likely to be of a higher quality than randomly generated
solutions, the algorithm tends towards higher-quality solutions over
time. Consequently, it mimics natural Darwinian evolution, with the
fitness acting as selection pressure on the population, and mutation
and crossover operators introducing variation.

Graph-based genetic programming has been directly applied to
both functional27,28 and stateful programs29. The use of graph-based
genetic programming for circuit synthesis has been considered in the
literature24,30–33, where the most prominent technique, namely, Carte-
sian genetic programming, rooted in circuit synthesis has remained a
relevant benchmark task34–36. Such studies typically consider the task
of synthesis against a completely known truth table, even when working
with approximate circuit synthesis37,38. In contrast, only a fraction of the
truth table is known in our ML setting, and the population consists of
circuits represented as graphs.

Figure 2 highlights the differences between the current approaches
of AutoML, neural architecture search (NAS), neural architecture and
implementation search (NAIS) and our auto tiny classifier circuits
methodology for generating ML hardware as accelerators.

AutoML (Fig. 2a) and NAS (Fig. 2b) generate an ML model and
neural architecture model, respectively, with maximized predic-
tion performance. However, the ML model must be translated into
register-transfer level (RTL), which, in turn, still needs to be verified.

Population of
graphs

Child graphs

Initialization

Best-discovered
solution graph(s)

Fitness evaluation and
selection

Mutation and crossover

Termination

Fig. 1 | Overview of the graph-based genetic programming methodology. A set
of possible solutions (population) are recombined (crossover) and/or perturbed
(mutation). The new, candidate solutions (children) are then evaluated for their
performance on the given task (fitness).

http://www.nature.com/natureelectronics

Nature Electronics

Article https://doi.org/10.1038/s41928-024-01157-5

Although, in general, the edges of each node are ordered so that
they appropriately handle commutative functions24, in this case, all the
considered functions are symmetric. A crucial property of the EGGP
representation is that the function nodes need not be ‘active’. If there
exists no path from a function node to an output node, then that node
has no semantic meaning in the graph. This inactive material can be
freely mutated to provide a direct mechanism for neutral drift.

When using the 1 + λ evolutionary algorithm, there are two main
forms of genetic operator: initialization and mutation. The initializa-
tion is parameterized by the number of function nodes n and the set
of possible functions F. First, the I input nodes i1…iI are created. Then,
for each i ∈ 1…n, a function node vi is created and associated with a
function uniformly chosen at random from F. Also, vi is then uniformly
connected at random to the existing nodes i1…iI, v1…vi−1 until its degree

matches the number of expected inputs to f. Finally, the O output nodes
o1…oO are created, and each is uniformly connected at random to a sin-
gle node in i1…iI, v1…vn. The hyperparameter n determines the overall
size of the graphs throughout the duration of the evolutionary run.

Mutation on solutions is performed via point mutations drawn
from binomial distributions. The mutation rate p parameterizes the
two binomial distributions B(n, p) and B(E, p) describing the muta-
tions of function nodes and edges, respectively. With mn ≈ B(n, p) and
me ≈ B(E, p) as the number of node and edge mutations to apply to
the graph, respectively, the total mn + me mutations are applied in a
randomly shuffled order, where

•	 For node mutations, a random function node v ∈ VF is chosen,
and its associated function f is replaced with f′ ∈ F, f′ ≠ f uniformly

Evolutionary
algorithm

Auto-translation of Boolean
expression into a Verilog
assign statement

Add Verilog wrappers

Synthesizable Verilog

Objectives and
constraints

(Accuracy, gate count,
input encoding)

Predictive circuit meets best accuracy

NAS

Hyperparameters

Best NN architecture topology meets best accuracy

Synthesis
tools

Te
st

Design

Generate stimuli

AutoML

ML model with best accuracy

NAIS

Neural
network

Best NN architecture topology meets best accuracy

Co-design NN and
programmable NN
accelerators

Synthesis
tools

Test
and verify

Synthesis
tools

Programmable
NN
accelerators

Programmable
NN
accelerators

Processors, GPUs

Manual
translation
to RTL

Test
and verify

Synthesis
tools

NetList

Data

HW pool

Data

ML pool

Processors, GPUs

Tabular
data

Manual
translation
to RTL

Hyperparameters

HyperparametersData

a

b

c

d

Fig. 2 | Differences between current approaches of AutoML, NAS, NAIS and
our auto tiny classifier circuits. a,b, AutoML (a) and NAS (b) generate an ML
model and a neural architecture model, respectively, with maximized prediction
performance. However, the ML model must be translated into RTL and verified.
c, NAIS selects a specific neural network (NN) and a known neural network

accelerator to iterate over the space, identifying the best parameters from the
hardware (HW) pool to maximize the prediction accuracy. d, Our proposed
methodology automatically searches the classifier circuit space using an
evolutionary algorithm. During circuit evolution, the generated circuit does not
map to any predefined ML model or known hardware circuit.

http://www.nature.com/natureelectronics

Nature Electronics

Article https://doi.org/10.1038/s41928-024-01157-5

chosen at random. As the functions used here are symmetric and
of the same arity, there is no need for input shuffling or connection
modification procedures43;

•	 For edge mutations, a random edge e ∈ E is chosen, where s is the
source of e and t is the target of e. The edge is redirected such that
its new target v ∈ VI ⋃ VF is uniformly chosen at random where the
following conditions hold:

•	 There is no path v → s to avoid cycles.
•	 v ≠ t as this would not introduce any perturbation of the solution.

In the special (very rare) case that the number of inputs I = 1 and
there is only a single node t = i1 satisfying the first condition, the
mutation is abandoned.

For all the experiments performed here, the fitness of a circuit C
is its balanced accuracy. In general, other fitness functions could be
supported, including objectives such as the number of gates or power
consumption, which could be handled through the use of multiobjec-
tive graph-based genetic programming to search for the Pareto-optimal
front of solutions and characterize the trade-off between objectives.
The evolutionary algorithm simply attempts to maximize the accuracy
for a given dataset with no prior knowledge of the eventual prediction
accuracy of the classifier circuit.

During evolution, the fitness of the circuits is separately evalu-
ated on both training and validation set. The fitness of the training set
determines the selection of children to replace the parent, whereas the
fitness of the validation set ultimately determines the ‘best-discovered
solution’. Effectively, we are maximizing the performance on the
training set, and the validation set is used to attempt to identify the
best-generalized solution. The performance reported later in this
Article is the performance on the reserved (unseen) testing set.

In the termination setting, we use a simple model, whereby if
the validation fitness (computed on the 50% validation set) has not
improved by at least γ within κ generations, the algorithm terminates
and returns the best-discovered solution with respect to the validation
data. Additionally, the algorithm will automatically terminate if the
number of generations exceeds the threshold G.

The hyperparameters of the algorithm are as follows:

•	 The number of children per generation λ
•	 The mutation rate p

•	 The function set from which solutions may be constructed F
•	 The termination threshold γ
•	 The corresponding window of generations to achieve that thresh-

old and terminate κ
•	 The maximum number of generations G

In this Article, we vary the function set F, number of function nodes
n, termination generations κ and maximum number of generations G
to choose the hyperparameters for evaluation. The other hyperparam-
eters use fixed values: λ = 4, p = 1

n
, γ = 0.01.

Auto tiny classifiers
Figure 3 shows the methodology of automatically generating tiny
classifier circuits as hardware accelerators. Auto tiny classifiers
directly generate a visual representation of the classifier circuit from
the training data and user-defined input parameters. Input param-
eters can be a subset or full set of the following: the total gate count
of the classifier circuits, the type of input encoding (binary, one-hot,
gray), the number of required bits per input for the encoding and
quantization strategy (quantization/quantiles). The EGGP-based
evolutionary algorithm crawls on the design space using the train-
ing data and converges on a simple graph of a sea of logic gates as
the output circuit representation, which is automatically translated
into RTL.

The autogenerated Verilog representation of a tiny classi-
fier is read by the synthesis tool generating the netlist for a given
technology-standard cell library and constraints, and then produces
the synthesized area, power and timing reports. The full chip imple-
mentation requires additional steps such as floor planning, clock-tree
insertion, place and route, and checking and generating the layout
rules. The output of the flow is the generated chip layout in the GDS
format to complete the tape-out as well as the area, power and timing
reports of the full implementation.

The generated hardware can be thought of as a set of classifica-
tion circuit block(s) or a single classification circuit unit that leads to
classification ‘guesses’. The prediction could be a single bit (binary
classification) or a set of bits in the case of multiclass classification
problems representing the target class. Except for the actual classifica-
tion circuit, the design uses buffers to hold the input and output data.
Local buffers eliminate the data transfers within the system, keeping
the required data close to the computation block(s).

Parameters

Training data

ASIC flow

Generated circuit

Input encoding
Bits per input
Quantization strategy
Number of gates

Technology, target frequency,
target area/power

Inputs
Gates
Outputs

EGGP-based
algorithm

Generate stimuli

DesignTe
st .v

.csv

Test data

.csv

Floor plan Clock-tree
insertion

Synthesis
Place
and

route
Layout

.gds

Fig. 3 | Methodology for generating tiny classifier circuits. Auto tiny classifiers
directly generate a visual representation of the classifier circuit from the
training data and user-defined input parameters. The EGGP-based evolutionary
algorithm crawls on the design space using the training data and converges on a

simple graph of a sea of logic gates as the output circuit representation, which is
automatically translated into RTL. The output of the flow is the generated chip
layouts in GDS format to complete the tape-out as well as the area, power and
timing reports of synthesis and full implementation.

http://www.nature.com/natureelectronics

Nature Electronics

Article https://doi.org/10.1038/s41928-024-01157-5

Figure 4 presents the classifier circuit as an accelerator within a
system. The inputs to the classifier circuit are single bits. The number
of inputs for one classification circuit can be defined as the number_of_
features_in_one_inference × encoding_bits_per_input. The actual size
of the local input buffer is determined after the classification circuit
generation and it holds the input bits, which will be consumed by the
classification circuit for the prediction.

In the case of binary classification where the prediction is ‘0’ or ‘1’
(‘yes’ or ‘no’), the classifier output is one bit. Basically, for each infer-
ence, we produce one classification and the result (single bit) is placed
in the output buffer. However, for multiclass classification problems,
the classification circuits have more than one output, indicating the
encoded predicted class. As a result, we instantiate bits_per_output
(a user-defined parameter) local output buffers, which hold the
encoded prediction for every inference.

Evaluation
The experiments use a comprehensive collection of 33 tabular data-
sets, mainly from OpenML44, UCI45 and Kaggle46. Extended Data Table 1
provides the full list of datasets and their main characteristics. Each
dataset is split into 80% training and 20% testing sets.

We use Google’s TabNet architecture1 with the recommended
hyperparameter configuration, and AutoGluon (an AutoML system
developed by Amazon) with explicit support for tabular data (tabular
predictor)47 as well as other baseline ML models.

Google’s TabNet is one of the first successful deep learning archi-
tectures addressing tabular data, using sequential attention to select
features for decision-making layers. AutoGluon searches the design
space over three state-of-the-art models (namely, XGBoost, TabNeu-
ralNet and NNFastAITab) for tabular data among others. AutoGluon
XGBoost is based on gradient boosting, whereas the other two models
are based on DNNs. In our experiments, AutoGluon tabular predictor
is configured with the above three models. It has been observed4 that
an NAS over MLPs delivers state-of-the-art NN models for tabular data.
Hence, we also use this NAS-based protocol.

Numerical inputs are automatically handled by ‘auto tiny classi-
fiers’ to encode the dataset features based on user preferences. The
encoding consists of the encoding strategy and the number of bits
per input. The encoding strategy determines the way that numerical
features get translated into binary. Currently, four main encoding strat-
egies are supported: (1) quantization, where each feature is divided into
buckets of equal width; (2) quantiles, where each feature is divided into
buckets of width roughly equal to the number of samples; (c) one-hot;

and (d) gray. Additionally, the users can manually tune the number of
bits per input to decide the granularity of the input encoding. From
now onwards, experiments report only the best-achieved accuracy
across the available encoding strategies with two and four bits per
input. In the comparative analysis with tiny classifiers, MLP models
are transformed into two-bit quantized versions. Since the hardware
requirements of tiny classifiers are minimal, we use a two-bit quantized
MLP as the resource-optimized high-performing baseline.

Our primary goal is to check whether we can generate accurate
combinational logic for an ML classification problem. We explore dif-
ferent hyperparameter combinations. The heat map shown in Extended
Data Fig. 1a presents the achieved accuracy of the generated tiny clas-
sifier circuits as we progressively decrease the target NAND gate count
from 300 to 50. Simultaneously, we explore the accuracy of the circuits
with two different function sets. The next step is to study how the
number of generations for the termination criterion function impacts
the accuracy of tiny classifiers when we limit the circuit size to a maxi-
mum of 300 gates. Extended Data Fig. 1b shows the achieved accuracy
for various generation values of the termination criterion function.
Extended Data Fig. 1c presents the number of termination iterations
versus achieved accuracy. We progressively increase the number of
termination iterations as we set the target gate count and the number
of generations for the termination function to 300.

Figure 5a compares the prediction accuracy of Google TabNet, Auto-
Gluon and tiny classifiers. The hyperparameters of tiny classifiers are set
to 300 for the number of gates as well as the termination function. In addi-
tion, the maximum number of iterations is set to 8,000 (Extended Data
Fig. 1). Across all the datasets, the average prediction accuracy of Auto-
Gluon XGBoost is 81%, which is the highest overall. The mean accuracy of
tiny classifiers across all the datasets is 78%, which is the second highest.

We compare the prediction accuracy distribution of tiny clas-
sifiers against AutoGluon XGBoost to understand how robust tiny
classifiers are with respect to XGBoost. Thus, we perform a tenfold
cross-validation study and show the accuracy distributions of tiny clas-
sifiers and XGBoost (Fig. 5b). The distribution shape in tiny classifiers
indicates a low variance of the accuracy distribution and therefore
makes tiny classifiers robust to variation.

The best-performing ML model, XGBoost and tiny classifiers
(Fig. 5a) are also compared with the best and smallest MLP con-
figurations. We first explore the accuracy of a nine-layer MLP with
512 neurons4. The NAS takes this MLP as a starter and reduces the
number of layers and neurons until reaching the smallest possible
neural network size with minimal accuracy loss, becoming a three-layer
MLP with 64 neurons.

Figure 5c shows the prediction accuracy across the six described
models. Across all the datasets, the non-quantized best MLP model tops
the performance by 83% overall prediction accuracy, whereas its two-bit
quantized version has the same performance as tiny classifiers. In con-
trast, the non-quantized smallest MLP has an overall prediction accuracy
of 80%, whereas its two-bit version stays at 75%. In summary, the perfor-
mance of tiny classifiers is no worse than the two-bit quantized MLP.

We design tiny classifiers in hardware across all the datasets. For
a comparison point, we also design the two ML baseline models in
hardware. In addition to XGBoost (best-performing ML baseline), the
two-bit quantized smallest MLP is also chosen as the second baseline
because it is the smallest MLP baseline (3 layers/64 neurons). As we
needed to manually design the baseline ML models in hardware, we
designed them only for two datasets (namely, blood and led).

These two datasets are selected on the basis of the number of
classes and the complexity of implementing XGBoost in hardware.
Blood has one of the smallest numbers of classes (that is, two) with
the smallest accuracy loss across all the two-class datasets and led
has one of the largest numbers of classes (that is, ten). One estimator
(binary classification) for blood and ten estimators (one estimator
for each target class) for led are designed in hardware for XGBoost.

[k:0]0 [k:0]n

....

[k:0]0
.... [k:0]n

N
um

be
r o

f i
nf

er
en

ce
s Number of features

Inputs
Gates
Outputs

In
pu

t b
u�

er

O
ut

pu
t b

u�
er

Classifier circuit

Fig. 4 | A classifier circuit as a hardware accelerator within a system. The
system can be thought of as a single classification circuit unit, which leads to
classification ‘guesses’. The prediction could be a single bit (binary classification)
or a set of bits in the case of multiclass classification problems, which represent
the encoding of the target class. Except for the actual classification circuit, the
design uses buffers to hold the input and output data. The use of local buffers
eliminates the data transfers within the system, keeping the required data close to
the computation block.

http://www.nature.com/natureelectronics

Nature Electronics

Article https://doi.org/10.1038/s41928-024-01157-5

For the development and verification of the MLP and XGBoost designs,
Bluespec System Verilog is used.

The Verilog representations of tiny classifiers and the two ML
baselines are synthesized using Synopsis Design Compiler targeting the
open 45 nm PDK48 silicon technology. We present the synthesis power
and area results for each tiny classifier circuit and baseline ML model
as standalone hardware blocks, that is, no interconnections to other
components of an overall ASIC design. Both input and output buffers
are included in the power and area calculations. The operational volt-
age and frequency are 1.1 V and 1 GHz, respectively.

Figure 6a,b shows the power consumption and area in NAND2-
equivalent gate count. Tiny classifier circuits consume 0.04–0.97 mW,
and the gate count ranges from 11 to 426 NAND2-equivalent gates. The
power consumption of MLP is 34–38 mW (86–118 times greater than that
of tiny classifiers), and the area is ~171 and ~278 times larger than tiny clas-
sifiers for blood and led. The power consumption of XGBoost is ~3.9 and
~8.0 times higher than tiny classifiers for blood and led, whereas the area
is 8.0 and 18.0 times larger than tiny classifiers, respectively.

Both tiny classifiers and XGBoost designs for blood and led are
implemented with Pragmatic’s 0.8 μm FlexIC metal-oxide thin-film

Vehicle kc
1

Phoneme

Skin
-se

g

Nomao
Blood

Higgs

Austr
ali

an

Segment

Numerai

Miniboone

Chris
tin

e

Jas
mine

Sylv
ine

Ccfra
ud

Clic
kp

red

Vowel

Spectf_
data

Wisc
onsin

 data
Sonar

Ionosp
here

Le
d

Wall
_ro

bot

Nurse
ry

Te
ac

hing as
sis

t

Seism
ic_b

umps

Olin
da o

utlie
r

Cars

Use
r m

odel d
ata

Ecoli_d
ata Iris

Wifi_
locali

za
tio

n
Yeas

t

Geomean

40

60

80

100

Ac
cu

ra
cy

 (%
)

AutoGluon XGBoost
AutoGluon TabNeuralNet

AutoGluon NNFastAITab
Google TabNet

Tiny classifiers

Vehicle kc
1

Phoneme

Skin
-se

g

Nomao

Blood
Higgs

Austr
ali

an

Segment

Numerai

Miniboone

Chris
tin

e

Jas
mine

Sylv
ine

Ccfra
ud

Clic
kp

red
Vowel

Spectf_
data

Wisc
onsin

 data
Sonar

Le
d

Wall
_ro

bot

Nurse
ry

Te
ac

hing as
sis

t

Seism
ic_b

umps

Olin
da o

utlie
r

Cars

Use
r m

odel d
ata

Ecoli_d
ata Iris

Wifi_
locali

za
tio

n
Yeas

t

Geomean

40

60

80

100

Ac
cu

ra
cy

 (%
)

AutoGluon XGBoost
MLP (NAS best)

MLP (NAS best), 2-bit quantized
MLP (NAS smallest)

MLP (NAS smallest), 2-bit quantized
Tiny classifiers

a

b

c

Ionosp
here

Vehicle kc
1

Phoneme

Skin
-se

g

Nomao
Blood

Higgs

Austr
alia

n

Segment

Numerai

Miniboone

Chris
tin

e

Jasm
ine

Sylvine

Ccfra
ud

Clic
kp

red
Vowel

Spect d
ata

Wisc
onsin

 data
Sonar

Ionosp
here

Led

Wall-r
obot

Nurse
ry

Teaching assi
sta

nt

Seism
ic bumps

Ollin
da outlie

rs
Cars

User m
odellin

g data

Ecoli d
ata Iris

Wifi
localiza

tio
n

Yeast

20

40

60

80

100

120

Ac
cu

ra
cy

 (%
)

Tiny classifiers AutoGluon XGBoost

Fig. 5 | Prediction accuracy analysis of tiny classifiers. a,b, Prediction
accuracy (a) of tiny classifiers compared with AutoGluon XGBoost, AutoGluon
TabularNeuralNet, AutoGluon NNFastAITabular and Google TabNet and (b)
robustness of tiny classifiers and AutoGluon XGBoost. c, Prediction accuracy

of tiny classifiers compared with the smallest MLP (non-quantized and two-bit
quantized versions), best MLP (non-quantized and two-bit quantized versions)
and AutoGluon XGBoost.

http://www.nature.com/natureelectronics

Nature Electronics

Article https://doi.org/10.1038/s41928-024-01157-5

transistor process in Pragmatic’s FlexLogIC line49. The designs are put
through the Cadence implementation flow50 to generate chip layouts.

Extended Data Fig. 2 shows the flexible chip layouts of the four
designs. Extended Data Table 2 summarizes the power, performance
and area results. Tiny classifier for blood is 10 times smaller and con-
sumes about 13 times less power than XGBoost, whereas it can run twice
as fast. On the other hand, the comparative results for led are more
prominent as tiny classifier is about 75 times smaller and consumes
lower power as well as three times faster than XGBoost. An impor-
tant observation is that the area variation of tiny classifiers between
a binary and multiclass classification problem is negligible. Specifi-
cally, our methodology generates a smaller tiny classifier for led (105
NAND2-equivalent gates) compared with blood (150 NAND2-equivalent
gates). In contrast, XGBoost implementation for led occupies five times
more area than blood.

Tiny classifier and XGBoost designs for blood are fabricated as
a FlexIC each on a 30-μm-thick polyimide 200 mm wafer and tested.
The tests of each FlexIC are undertaken in a wafer probe station. The
input test vectors for the blood dataset are generated for each design
through simulation, and the output signals from the simulation are
used as the golden reference. Each input test vector is sent through
the test probe card to the flexible chip under test, and the signals from
the output pads are recorded and compared with the golden refer-
ence. Extended Data Fig. 3 shows the die photos of the tiny classifier
FlexIC and the XGBoost FlexIC for the blood dataset. The waveforms
(Extended Data Figs. 4 and 5) captured during the test show that the

test outputs match the golden reference (shown in blue colour) for
numerous test vectors.

Our test results also show that the tiny classifier FlexICs have six
times higher yield (that is, the ratio of the number of fully functional
chips to the total number of fabricated chips) than the XGBoost FlexICs,
which implies that the unit cost of a tiny classifier chip will be six times
cheaper than that of XGBoost.

Conclusions
We have reported a methodology—termed auto tiny classifiers—to
automatically generate classification circuits from tabular data. We
identified a connection between graph-based genetic programming
and classification problems in ML and developed an evolutionary
approach to generate tiny classifier circuits composed of a small num-
ber of logic gates (less than 300 gates), which are capable of matching
the performance of the state-of-the-art ML techniques. We evaluated
the autogenerated tiny classifiers across datasets and reported the
synthesis results and ML baselines designed in an ASIC in 45 nm sili-
con technology, showing improvements in area and power. We have
also implemented tiny classifiers and XGBoost (smallest ML baseline)
as flexible chips using the 0.8 μm FlexIC thin-film transistor process
technology. The full chip implementation results showed that the tiny
classifiers could be clocked 2–3 times faster, were 10–75 times smaller
and consumed lower power than XGBoost. The tiny classifiers are also
six times cheaper to produce compared with XGBoost when fabricated
as flexible chips.

Our methodology aims to generate classifier circuits for tabu-
lar data, but it is not—in principle—limited to tabular data. Work on
recurrent-graph-based genetic programming51 indicates the general
applicability of the evolutionary approach to other forms of data,
such as time-series data. Our tiny classifiers could be integrated as
tightly coupled functional units or co-processors, or become loosely
coupled hardware accelerators. Their smaller footprint and low power
consumption make them attractive for near-sensor computing and
emerging smart package applications.

Data availability
The data that support the plots within this paper and other findings of
this study are available from the corresponding author upon reason-
able request.

Code availability
The code used to generate the plots within this paper is available from
the corresponding author upon reasonable request.

References
1. Arik, S. Ö. & Pfister, T. TabNet: attentive interpretable tabular

learning. In Proc. AAAI Conference on Artificial Intelligence 35,
6679–6687 (2021).

2. Shwartz-Ziv, R. & Armon, A. Tabular data: deep learning is not all
you need. Inf. Fusion 81, 84–90 (2022).

3. Popov, S., Morozov, S. & Babenko, A. Neural oblivious decision
ensembles for deep learning on tabular data. Preprint at
https://doi.org/10.48550/arXiv.1909.06312 (2019).

4. Kadra, A. et al. Well-tuned simple nets excel on tabular
datasets. In Proc. Neural Information Processing Systems
https://proceedings.neurips.cc/paper_files/paper/2021/file/
c902b497eb972281fb5b4e206db38ee6-Paper.pdf
(NIPS, 2021).

5. Zhang, S., Yao, L., Sun, A. & Tay, Y. Deep learning based
recommender system: a survey and new perspectives. ACM
Comput. Surv. 52, 5 (2019).

6. Zhang, Y. et al. CADRE: Cloud-Assisted Drug REcommendation
service for online pharmacies. Mobile Netw. Appl. 20, 348–355
(2015).

Ve
hi

cl
e

kc
1

Ph
on

em
e

Sk
in

se
g

N
om

ao
Bl

oo
d

H
ig

gs
Au

st
ra

lia
n

Se
gm

en
t

N
um

er
ai

M
in

ib
oo

ne
C

hr
is

tin
e

Ja
sm

in
e

Sy
lv

in
e

C
cf

ra
ud

C
lic

kp
re

d
Vo

w
el

Sp
ec

tf
_d

at
a

W
is

co
ns

in
_d

at
a

So
na

r
Io

no
sp

he
re

Le
d

W
al

l_
ro

bo
t

N
ur

se
ry

Te
ac

hi
ng

 a
ss

is
t

Se
is

m
ic

_b
um

ps
O

lin
da

 o
ut

lie
r

C
ar

s
U

se
r m

od
el

 d
at

a
Ec

ol
i_d

at
a

Iri
s

W
ifi

_l
oc

al
iz

at
io

n
Ye

as
t

10–1

100

101

Po
w

er
 (m

W
),

lo
g

sc
al

e

3.90×

86.90×

8.03×

118.80×

2-bit quantized MLP XGBoost Tiny classifiers

Ve
hi

cl
e

kc
1

Ph
on

em
e

Sk
in

se
g

N
om

ao
Bl

oo
d

H
ig

gs
Au

st
ra

lia
n

Se
gm

en
t

N
um

er
ai

M
in

ib
oo

ne
C

hr
is

tin
e

Ja
sm

in
e

Sy
lv

in
e

C
cf

ra
ud

C
lic

kp
re

d
Vo

w
el

Sp
ec

tf
_d

at
a

W
is

co
ns

in
_d

at
a

So
na

r
Io

no
sp

he
re

Le
d

W
al

l_
ro

bo
t

N
ur

se
ry

Te
ac

hi
ng

 a
ss

is
t

Se
is

m
ic

_b
um

ps
O

lin
da

 o
ut

lie
r

C
ar

s
U

se
r m

od
el

 d
at

a
Ec

ol
i_d

at
a

Iri
s

W
ifi

_l
oc

al
iz

at
io

n
Ye

as
t

101

102

103

104

N
AN

D
2-

eq
ui

v.
, l

og
 s

ca
le

8.3×
171.0×

18.3×

278.0×

2-bit quantized MLP XGBoost Tiny classifiers

a

b

Fig. 6 | ASIC synthesis results of tiny classifiers and comparison against the
two ML baselines. a,b, Power consumption (a) and NAND2-equivalent gate
count (b) of tiny classifiers compared with MLP and AutoGluon XGBoost ASIC
implementations for the blood and led datasets. The designs are synthesized
using Synopsis Design Compiler targeting the open 45 nm PDK silicon technology.

http://www.nature.com/natureelectronics
https://doi.org/10.48550/arXiv.1909.06312
https://proceedings.neurips.cc/paper_files/paper/2021/file/c902b497eb972281fb5b4e206db38ee6-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/c902b497eb972281fb5b4e206db38ee6-Paper.pdf

Nature Electronics

Article https://doi.org/10.1038/s41928-024-01157-5

7. Bao, Y. & Jiang, X. An intelligent medicine recommender system
framework. In 2016 IEEE 11th Conference on Industrial Electronics
and Applications (ICIEA) 1383–1388 (IEEE, 2016).

8. Lee, J., Stanley, M., Spanias, A. & Tepedelenlioglu, C. Integrating
machine learning in embedded sensor systems for Internet-of-
Things applications. In 2016 IEEE International Symposium on Signal
Processing and Information Technology (ISSPIT) 290–294 (IEEE, 2016).

9. Ozer, E. et al. Binary neural network as a flexible integrated circuit
for odour classification. In 2020 IEEE International Conference on
Flexible and Printable Sensors and Systems (FLEPS) 1–4 (IEEE, 2020).

10. Li, W., Logenthiran, T., Phan, V. & Woo, W. L. Implemented
IoT-based Self-learning Home Management System (SHMS) for
Singapore. IEEE Internet Things J. 5, 2212–2219 (2018).

11. Kumar, PriyanMalarvizhi & Gandhi, UshaDevi A novel three-tier
Internet of Things architecture with machine learning algorithm
for early detection of heart diseases. Comput. Elec. Eng. 65,
222–235 (2018).

12. Grinsztajn, L., Oyallon, E. & Varoquaux, G. Why do tree-based
models still outperform deep learning on tabular data? Preprint at
https://doi.org/10.48550/arXiv.2207.08815 (2022).

13. Giraldo, J. S. P., Lauwereins, S., Badami, K. & Verhelst, M. Vocell:
a 65-nm speech-triggered wake-up SoC for 10-μW keyword
spotting and speaker verification. IEEE J. Solid-State Circuits 55,
868–878 (2020).

14. Mubarik, M. H. et al. Printed machine learning classifiers.
In 2020 53rd Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO) 73–87 (IEEE, 2020).

15. Weller, D. D. et al. Printed stochastic computing neural networks.
In 2021 Design, Automation and Test in Europe Conference and
Exhibition (DATE) 914–919 (IEEE, 2021).

16. Biggs, J. et al. A natively flexible 32-bit Arm microprocessor.
Nature 595, 532–536 (2021).

17. Bleier, N. et al. FlexiCores: low footprint, high yield, field
reprogrammable flexible microprocessors. In Proc. 49th Annual
International Symposium on Computer Architecture (ISCA ’22)
831–846 (ACM, 2022).

18. Ozer, E. et al. Bespoke machine learning processor development
framework on flexible substrates. In 2019 IEEE International
Conference on Flexible and Printable Sensors and Systems (FLEPS)
1–3 (IEEE, 2019).

19. Ozer, E. et al. A hardwired machine learning processing engine
fabricated with submicron metal-oxide thin-film transistors on a
flexible substrate. Nat. Electron. 3, 419–425 (2020).

20. Ozer, E. et al. Malodour classification with low-cost flexible
electronics. Nat. Commun. 14, 777 (2023).

21. Zhou, F. & Chai, Y. Near-sensor and in-sensor computing.
Nat. Electron. 3, 664–671 (2020).

22. Iyer, R. & Ozer, E. Visual IoT: architectural challenges and
opportunities; toward a self-learning and energy-neutral IoT.
IEEE Micro. 36, 45–49 (2016).

23. Miller, J. F. & Harding, S. L. Cartesian genetic programming.
In Proc. 10th Annual Conference Companion on Genetic and
Evolutionary Computation (GECCO ’08) 2701–2726 (ACM, 2008).

24. Atkinson, T., Plump, D. & Stepney, S. Evolving graphs by graph
programming. In European Conference on Genetic Programming
10781 (Springer, 2018).

25. Brameier, M. F. and Banzhaf, W. Linear Genetic Programming
(Springer Science & Business Media, 2007).

26. Poli, R. et al. Evolution of graph-like programs with parallel
distributed genetic programming. in ICGA 346–353 (Citeseer,
1997).

27. Leitner, J., Harding, S., Forster, A. & Schmidhuber, J. Mars terrain
image classification using Cartesian genetic programming. In Proc.
11th International Symposium on Artificial Intelligence, Robotics and
Automation in Space, i-SAIRAS 1–8 (European Space Agency, 2012).

28. Parziale, A., Senatore, R., Della Cioppa, A. & Marcelli, A. Cartesian
genetic programming for diagnosis of Parkinson disease through
handwriting analysis: performance vs. interpretability issues.
Artif. Intell. Med. 111, 101984 (2021).

29. Brameier, M. & Banzhaf, W. Evolving teams of predictors with
linear genetic programming. Genet. Program. Evolvable Mach. 2,
381–407 (2001).

30. Miller, J. F., Thomson, P. & Fogarty, T. Designing electronic circuits
using evolutionary algorithms. Arithmetic circuits: a case study.
in Genetic Algorithms and Evolution Strategies in Engineering and
Computer Science 105–131 (Wiley, 1997).

31. Miller, J. F. et al. An empirical study of the efficiency of
learning Boolean functions using a Cartesian genetic
programming approach. In Proc. 1st Annual Conference
on Genetic and Evolutionary Computation 2, 1135–1142
(1999).

32. Sotto, L. F. D., Kaufmann, P., Atkinson, T., Kalkreuth, R. &
Basgalupp, M. P. A study on graph representations for
genetic programming. In Proc. 2020 Genetic and Evolutionary
Computation Conference 931–939 (ACM, 2020).

33. Françoso Dal Piccol Sotto, L., Kaufmann, P., Atkinson, T.,
Kalkreuth, R. & Porto Basgalupp, M. Graph representations in
genetic programming. Genet. Program. Evolvable Mach. 22,
607–636 (2021).

34. Walker, J. A. & Miller, J. F. The automatic acquisition, evolution and
reuse of modules in Cartesian genetic programming. IEEE Trans.
Evol. Comput. 12, 397–417 (2008).

35. Harding, S. L., Miller, J. F. & Banzhaf, W. Self-modifying Cartesian
genetic programming. in Cartesian Genetic Programming 101–124
(Springer, 2011).

36. Hodan, D., Mrazek, V. & Vasicek, Z. Semantically-oriented
mutation operator in Cartesian genetic programming for
evolutionary circuit design. Genet. Program. Evolvable Mach. 22,
539–572 (2021).

37. Vasicek, Z. & Sekanina, L. Evolutionary approach to approximate
digital circuits design. IEEE Trans. Evol. Comput. 19, 432–444
(2014).

38. Mrazek, V., Hrbacek, R., Vasicek, Z. & Sekanina, L. Evoapprox8b:
library of approximate adders and multipliers for circuit design
and benchmarking of approximation methods. In Design,
Automation and Test in Europe Conference and Exhibition (DATE)
258–261 (IEEE, 2017).

39. Chen, T. & Guestrin, C. XGBoost: a scalable tree boosting
system. In Proc. 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining 785–794 (ACM,
2016).

40. Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A. V. &
Gulin, A. CatBoost: unbiased boosting with categorical features.
Adv. Neural Inf. Proc. Sys. 31 (2018).

41. Miller, J. F. Cartesian genetic programming: its status and future.
Genet. Program. Evolvable Mach. 21, 129–168 (2020).

42. Kimura, M. The Neutral Theory of Molecular Evolution (Cambridge
Univ. Press, 1983).

43. Atkinson, T., Plump, D. & Stepney, S. Evolving graphs with
semantic neutral drift. Nat. Comput. 20, 127–143 (2021).

44. Vanschoren, J., van Rijn, J. N., Bischl, B. & Torgo, L. OpenML:
networked science in machine learning. SIGKDD Explor. Newsl.
15, 49–60 (2013).

45. Dua, D. & Graff, C. UCI machine learning repository;
https://archive.ics.uci.edu/ (2017).

46. Kaggle. https://www.kaggle.com
47. Erickson, N. et al. AutoGluon-Tabular: robust and accurate

AutoML for structured data. Preprint at https://doi.org/10.48550/
arXiv.2003.06505 (2020).

48. FreePDK45. Standard Cell Library 45nm.

http://www.nature.com/natureelectronics
https://doi.org/10.48550/arXiv.2207.08815
https://archive.ics.uci.edu/
https://www.kaggle.com
https://doi.org/10.48550/arXiv.2003.06505
https://doi.org/10.48550/arXiv.2003.06505

Nature Electronics

Article https://doi.org/10.1038/s41928-024-01157-5

49. FlexLogIC; https://www.pragmaticsemi.com/create-more/
devices (2022).

50. Cadence Innovus Implementation System. https://www.
cadence.com/en_US/home/resources/datasheets/
innovus-implementation-system-ds.html (2024).

51. Atkinson, T. Evolving Graphs by Graph Programming. PhD thesis,
Univ. of York (2019).

Acknowledgements
K.I. is funded by an Arm Ltd and EPSRC iCASE PhD Scholarship.
M.L. is funded by an Arm/RAEng Research Chair award and a
Royal Society Wolfson Fellowship. The research carried out by
T.A. happened while being an employee of the University of
Manchester. The research is partially funded by EPSRC LAMBDA
(EP/N035127/1), EnnCore (EP/T026995/1) and UKRI NimbleAI
(no. 10039070).

Author contributions
G.B., E.O., J.K. and J.B. conceived the concept of evolving a
graph of gates as an ML classifier for tabular data. K.I. and M.L.
developed the methodology and software toolflow for generating
tiny classifier circuits using the graph-based genetic programming
algorithm developed by T.A. All the authors helped with the
design of the experiments. K.I. implemented and conducted
the experiments and designed the tiny classifiers and XGBoost
classification hardware blocks. J.K. performed the flexible chip
implementation of the tiny classifiers and XGBoost. J.K. and
G.A. tested and evaluated the fabricated FlexICs. Finally, K.I.,
E.O., T.A. and M.L. wrote the Article.

Competing interests
The authors declare no competing interests.

Additional information
Extended data is available for this paper at
https://doi.org/10.1038/s41928-024-01157-5.

Correspondence and requests for materials should be addressed to
Konstantinos Iordanou.

Peer review information Nature Electronics thanks Pallab Datta,
Chris Winstead and the other, anonymous, reviewer(s) for their
contribution to the peer review of this work.

Reprints and permissions information is available at
www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2024

http://www.nature.com/natureelectronics
https://www.pragmaticsemi.com/create-more/devices
https://www.pragmaticsemi.com/create-more/devices
https://www.cadence.com/en_US/home/resources/datasheets/innovus-implementation-system-ds.html
https://www.cadence.com/en_US/home/resources/datasheets/innovus-implementation-system-ds.html
https://www.cadence.com/en_US/home/resources/datasheets/innovus-implementation-system-ds.html
https://doi.org/10.1038/s41928-024-01157-5
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Nature Electronics

Article https://doi.org/10.1038/s41928-024-01157-5

Extended Data Fig. 1 | Prediction Accuracy Analysis of Tiny Classifiers with
hyper-parameter tuning. (a) Accuracy vs. number of gates. Generations for
the termination function is 300 and termination iterations is 2000. Full FS
indicates that the generated circuit will be constructed with logical gates within
the function set F = {and, or, nand, nor}. For NAND function set the generated

circuits constructed only with NAND gates. (b) Accuracy vs. generations for
the termination function. The number of gates is 300 and the number of
termination iterations is 2000. (c) Accuracy vs. the number of termination
iterations. The number of gates and the generations for the termination
function are both set to 300.

http://www.nature.com/natureelectronics

Nature Electronics

Article https://doi.org/10.1038/s41928-024-01157-5

Extended Data Fig. 2 | Flexible chip layouts of Tiny Classifiers and XGBoost. The flexible chips are implemented in Pragmatic’s 0.8μm FlexIC TFT process for blood
and led datasets.

http://www.nature.com/natureelectronics

Nature Electronics

Article https://doi.org/10.1038/s41928-024-01157-5

Extended Data Fig. 3 | Die photos of Tiny Classifier (a) and XGBoost (b) FlexICs for blood dataset. Tiny Classifier and XGBoost designs for blood are fabricated as a
FlexIC each on a 30μm thick polyimide 200mm wafer and tested. The tests of each FlexIC are undertaken in a wafer probe station.

http://www.nature.com/natureelectronics

Nature Electronics

Article https://doi.org/10.1038/s41928-024-01157-5

Extended Data Fig. 4 | Waveforms capture the test outputs on a specific number of input-test vectors for the Tiny Classifier FlexIC. a,b, The test outputs were
compared to the expected output shown in blue.

http://www.nature.com/natureelectronics

Nature Electronics

Article https://doi.org/10.1038/s41928-024-01157-5

Extended Data Fig. 5 | Waveforms capture the test outputs on a specific number of input-test vectors for the XGBoost FlexIC. a,b, The test outputs were compared
to the expected output shown in blue.

http://www.nature.com/natureelectronics

Nature Electronics

Article https://doi.org/10.1038/s41928-024-01157-5

Extended Data Table 1 | The dataset collection

The experiments use a comprehensive collection of 33 tabular datasets, mainly from OpenML, UCI and Kaggle. Note: † indicates that the dataset is part of the evaluation of AutoGluon47.

http://www.nature.com/natureelectronics

Nature Electronics

Article https://doi.org/10.1038/s41928-024-01157-5

Extended Data Table 2 | Tiny Classifiers and XGBoost implementation results

Tiny Classifiers and XGBoost designs for blood and led are implemented with Pragmatic’s 0.8μm FlexIC metal-oxide thin-film transistor (TFT) process in Pragmatic’s FlexLogIC line at
3V supply voltage.

http://www.nature.com/natureelectronics

	Low-cost and efficient prediction hardware for tabular data using tiny classifier circuits
	Graph-based genetic programming
	Automatically evolving classifier circuits
	Auto tiny classifiers
	Evaluation
	Conclusions
	Acknowledgements
	Fig. 1 Overview of the graph-based genetic programming methodology.
	Fig. 2 Differences between current approaches of AutoML, NAS, NAIS and our auto tiny classifier circuits.
	Fig. 3 Methodology for generating tiny classifier circuits.
	Fig. 4 A classifier circuit as a hardware accelerator within a system.
	Fig. 5 Prediction accuracy analysis of tiny classifiers.
	Fig. 6 ASIC synthesis results of tiny classifiers and comparison against the two ML baselines.
	Extended Data Fig. 1 Prediction Accuracy Analysis of Tiny Classifiers with hyper-parameter tuning.
	Extended Data Fig. 2 Flexible chip layouts of Tiny Classifiers and XGBoost.
	Extended Data Fig. 3 Die photos of Tiny Classifier (a) and XGBoost (b) FlexICs for blood dataset.
	Extended Data Fig. 4 Waveforms capture the test outputs on a specific number of input-test vectors for the Tiny Classifier FlexIC.
	Extended Data Fig. 5 Waveforms capture the test outputs on a specific number of input-test vectors for the XGBoost FlexIC.
	Extended Data Table 1 The dataset collection.
	Extended Data Table 2 Tiny Classifiers and XGBoost implementation results.

