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Data-driven algorithms—such as signal processing and artificial neural 
networks—are required to process and extract meaningful information from 
the massive amounts of data currently being produced in the world. This 
processing is, however, limited by the traditional von Neumann architecture 
with its physical separation of processing and memory, which motivates 
the development of in-memory computing. Here we report an integrated 
32 × 32 vector–matrix multiplier with 1,024 floating-gate field-effect 
transistors that use monolayer molybdenum disulfide as the channel 
material. In our wafer-scale fabrication process, we achieve a high yield 
and low device-to-device variability, which are prerequisites for practical 
applications. A statistical analysis highlights the potential for multilevel and 
analogue storage with a single programming pulse, allowing our accelerator 
to be programmed using an efficient open-loop programming scheme. We 
also demonstrate reliable, discrete signal processing in a parallel manner.

Over the past decade, billions of sensors from connected devices have 
been used to translate physical signals and information to the digital 
world. Due to their limited computing power, sensors integrated into 
embedded remote devices often transmit raw and unprocessed data to 
their hosts. However, the high energy cost of wireless data transmission1 
affects device autonomy and data transmission bandwidth. Improving 
their energy efficiency could open a new range of applications and 
reduce their environmental footprint. Furthermore, data processing 
will move from remote hosts to local sensor nodes; therefore, data 
transmission would be limited to structured and valuable data, which 
is desirable for such purposes.

The von Neumann architecture—in which memory and logic units 
are separate—is seen as the critical factor limiting the efficiency of 
computing systems in general devices and particularly in edge-based 
devices. The separation between processing and memory imposed by 
the von Neumann architecture requires the data to be sent back and 

forth between the two during data and signal processing or inference 
in neural networks. This data communication between memory and 
processing units already accounts for one-third of the energy spent 
in scientific computing2.

To overcome the von Neumann communication bottleneck3,4, 
in-memory computing architectures—in which memory, logic 
and processing operations are collocated—are being explored. 
Processing-in-memory devices are especially suitable for perform-
ing vector–matrix multiplication, which is a key operation for data 
processing and the most intensive calculation in machine-learning 
algorithms. By taking advantage of the memory’s physical layer to 
perform the multiply–accumulate (MAC) operation, this architec-
ture overcomes the von Neumann communication bottleneck. So 
far, this processing strategy has been used in applications such as 
solving linear5,6 and differential equations7, signal and image pro-
cessing8 and artificial neural network accelerators9–12. However, the 
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2D-semiconducting-materials-based circuits have been limited to 
photodetectors34–37 or traditional analogue and digital integrated cir-
cuits38–42; hardware implementations43 with full-wafer and large-scale 
system integration involving 2D-materials-based non-volatile memo-
ries that can perform computation are missing.

In this Article, we report a chip containing a 32 × 32 FGFET 
matrix with 1,024 memory devices per chip and an 83.1% yield. 
The working devices show similar IDS versus VG characteristics and 
hysteresis. During fabrication, we use wafer-scale metal–organic 
chemical-vapour-deposited (MOCVD) monolayer MoS2 as the chan-
nel material, and the entire fabrication process is carried out in a 4-inch 
line cleanroom. We also demonstrate multibit data storage in each 
device with a single programming pulse. Finally, we show that our 
devices can be used in in-memory computing by performing discrete 
signal processing with different kernels in a highly parallelized manner.

Memory matrix
We approach in-memory computing by exploiting charge-based 
memories using monolayer MoS2 as a channel material. Specifically, 
we fabricated FGFETs to take advantage of the electrostatic sensitiv-
ity of 2D semiconductors19. To enable the realization of larger arrays, 
we organized our FGFETs in a matrix in which we can address indi-
vidual memory elements by carefully choosing the corresponding 
row and column. Figure 1a,b shows a three-dimensional rendering of 
the memory matrix and the detailed structure of each FGFET, respec-
tively. The use of a matrix configuration allows a denser topology and 

search for the best materials and devices for this type of processor 
is still ongoing.

Several devices have been studied for in-memory computing, 
including standard flash memories, emerging resistive random-access 
memories and ferroelectric memories3,13–18. More recently, 
two-dimensional (2D) materials have shown promise in the field 
of beyond-complementary metal–oxide–semiconductor (CMOS) 
devices19–24, as well as in-memory and in-sensor computing25–28. Due 
to their atomic-scale thickness, floating-gate field-effect transistors 
(FGFETs) based on monolayer molybdenum disulfide (MoS2) offer 
high sensitivity to charge variations in the floating gate and reduced 
cell-to-cell interference. Such devices could be scaled down to sub-
100 nm lengths without loss of performance27,29,30. Moreover, the 
van der Waals nature of MoS2 allows devices based on these materials to 
be integrated into the back-end-of-line31. This would allow processors to 
be fabricated with multiple levels of memory cores directly integrated 
with the required interfaces, creating dense in-memory networks.

FGFETs based on MoS2 have been used in logic-in-memory32 
and in-memory computing as well as as the main building blocks of 
perceptron layers27,33 where they are projected to offer more than 
an order of magnitude improvement in power efficiency compared 
with CMOS-based circuits30. These demonstrations have highlighted 
the promise of 2D materials for in-memory computing, but further 
progress and practical applications require wafer-scale fabrication 
and large-scale or very-large-scale system integration. Currently, 
demonstrations of the wafer-scale and large-scale integration of 
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Fig. 1 | Device and matrix description and characterization. a, Three-
dimensional rendering of the FGFETs connected into a matrix array. Both gate 
and drain contacts are organized in rows and the source signal is applied to the 
columns. The gate signals are applied on the left side and drain signals, on the 
right. The drain–source current is read from the column. The inset shows the 
correspondence between signals and vector–matrix multiplication. b, Three-
dimensional rendering of the FGFET cross section. It shows the different device 

parts. c, Optical image of the memory matrix configuration. Scale bar, 500 µm  
d, IDS versus VG hysteresis curves of the 851 working devices; the red curve 
describes the highlighted behaviour of one of the 851 memory devices. 
The curves coloured in grey correspond to the remaining devices. e, Three-
dimensional plot shows the mapping of the ON and OFF currents on the 32 × 32 
chip. Devices in orange are disconnected.
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directly corresponds to performing vector–matrix multiplications. Our 
memories are controlled by local 2 nm/40 nm Cr/Pt gates fabricated 
in a gate-first approach. This allows us to improve the growth of the 
dielectric by atomic layer deposition38 and to minimize the number 
of processing steps that the 2D channel is exposed to, resulting in an 
improved yield. The floating gate is a 5 nm Pt layer sandwiched between 
30 nm HfO2 (block oxide) and 7 nm HfO2 (tunnel oxide). Next, we etch 
vias on the HfO2 to electrically connect the bottom metal (M1) and top 
metal (M2) layers. This is required for routing the source and drain sig-
nals without an overlap. Wafer-scale MOCVD-grown MoS2 is transferred 
on top of the gate stack and etched to form the transistors’ channels. 
Supplementary Figs. 1 and 2 provide details about the material quality 

and characterization. Finally, 2 nm/60 nm Ti/Au is patterned and evapo-
rated on top, forming the transistors’ drain–source contacts as well as 
the second metal layer. Methods provides further details about the 
fabrication and Supplementary Figs. 3–8 show the characterization 
details. Figure 1c shows the optical image of the fabricated chip contain-
ing 32 rows and 32 columns for a total of 1,024 memories. In the image, 
source channels are accessed from the bottom; drain channels, from 
the right; and gate channels, from the left.

Our memories are based on standard flash memories. The memory 
mechanism relies on shifting the neutral threshold voltage (VTH0) by 
changing the number of charges in the trapping layer (ΔQ), that is, the 
platinum floating gate in our case. When a high positive/negative bias 
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Fig. 2 | Open-loop programming. a, Schematic of the two-state operation of 
the open-loop programming scheme. In the programming phase, the interface 
board is used to set the gate and source lines to the low-impedance state and the 
drain line to the high-impedance state, whereas in the reading phase, all three 
lines are set to the low-impedance state. b, Distribution of output states (wOUT) in 
the linear scale. The data are fitted with a gamma distribution. c, Distribution of 

output states (wOUT) in the log10 scale. The distributions are fitted with a Gaussian 
distribution. d, Three-dimensional map of log10 value of wOUT as a function of 
device position and different programming voltages. e, Empirical cumulative 
distribution function (ECDF) as a function of the programmed states in the log10 
scale.
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is applied to the gate, the band alignment starts favouring the tunnel-
ling in/out of electrons from the semiconductor to the floating gate, 
changing the carrier concentration in the trapping layer. We define our 
memory window (ΔVTH) by taking the difference between the thresh-
old voltage from the forward and reverse paths, which are taken at a 
constant current level. Our previous work verified the programming 
mechanism by fitting our experimental curves in a device simulation 
model27,29. Since the memory effect entirely relies on a charge-based 
process, flash memories tend to have better reliability and reproduc-
ibility than emerging memories that are material dependent such as 
resistive random-access memories and phase-change memories3. We 
designed and manufactured a custom device interface board to facili-
tate the characterization of the memory array (Supplementary Figs. 9 
and 10 provide a detailed description). Figure 1d shows the IDS versus VG 
sweeps performed for each device. The fabrication presents a yield of 
83.1% and the devices are statistically similar (Supplementary Section 
4). The relatively high OFF-state current is due to a lack of resolution of 
the analogue-to-digital converters used in the setup. High-resolution 
single-device measurements confirm the typical OFF-state currents on 
the order of picoamperes. Figure 1e shows the ON and OFF current dis-
tribution over the memory matrix. Both ON and OFF currents are taken 
at VDS = 100 mV, forming two distinct planes. The ON and OFF current 

shows a good distribution over the entire matrix. Supplementary Figs. 
13 and 14 show further detailed single-device characterization, con-
firming the performance of devices as memories with good retention 
and endurance stabilities. We show that the devices have a statistically 
similar memory window ΔVTH = 4.30 ± 0.25 V. This value is smaller 
compared with the one extracted from single-device measurements 
due to the higher slew rates (5 V s–1) required for the time-effective 
characterization of 1,024 devices in the matrix.

Open-loop programming
The similarity of the devices motivates us to pursue a statistical study 
of the memories’ programming behaviour. In the context of in-memory 
computing, an open-loop programming analysis is fundamental. 
Standard write–verify approaches may be too time-consuming when 
programming a large flash memory array. A statistical understanding 
of memory states in an open loop is essential to improve the perfor-
mance and speed.

We perform the experiment such that each device is independently 
excited by selecting the corresponding row (i) and column (j). Analogue 
switches in the device interface board keep a low-impedance path in 
the selected row (i)/column (j) and high impedance in the remaining 
rows and columns. This ensures that a potential difference is applied 
only to the desired device, avoiding unwanted programming. For the 
same reason, we divide the device programming and reading into two 
independent stages. During the programming phase, the correspond-
ing gate line (row) and the corresponding source line (column) are 
selected and programming pulses with parameters TPULSE and VPULSE 
are applied in the gate. Due to the tunnelling nature of the device, only 
two terminals are required to generate the band bending needed for 
charge injection into the floating gate. After the pulse, the gate voltage 
is changed to VREAD, which is low enough to prevent reprogramming the 
memory state. In the reading phase, the drain line is also connected, 
and the conductance value is probed by applying voltage VDS to the 
drain. This two-stage procedure is required because we are using a 
three-terminal device; therefore, both gate and drain share the same 
row, and consequently, the entire row is biased when the gate and 
drain lines are engaged. If high voltages in the gate were applied when 
the drain line is connected, the whole row would be reprogrammed, 
causing a loss of information in the memories. Figure 2a shows the 
description of this two-stage programming procedure.

For the subsequent measurements, we used VREAD = −3 V, VDS = 1 V 
and TPULSE = 100 ms. Before each measurement, we reset the memo-
ries by applying a positive 10 V pulse, which puts the devices into a 
low-conductance state. Due to parasitic resistances in the matrix, a 
linear compensation in the digital gains is applied (Supplementary Figs. 
17 and 18 provide further details). The compensation method improves 
the programming reliability of the devices by an order of magnitude. 
We estimate a programming error of 500 errors per million for pro-
gramming one bit and having one error per million for programming 
the erase state. Figure 2b,c shows the distribution of memory states 
after different pulse intensities, namely, VPULSE = +10 V, −4 V, −6 V, −8 V 
and −10 V, in both linear and logarithmic representations. We observe 
that on a linear scale, the increase in the pulse amplitude is accompa-
nied by a higher memory state value and a larger spread. On the other 
hand, by analysing the logarithm of the state value, we can see that 
the memory has well-defined storage states. This leads us to conclude 
that this memory has the potential for multivalued storage without 
write–verify algorithms, especially when used on a logarithmic scale.

Figure 2d shows the spatial distribution of the states on the entire 
chip. We observe that the memory states create a constant plane value 
for the different programming voltages, VPULSE. Finally, Fig. 2e shows the 
empirical cumulative distribution function (ECDF) of the logarithmic rep-
resentation. These results support the possibility of multivalued program-
ming, as discussed previously, and indicate that the memory elements can 
be used for storing analogue weights for in-memory computing.
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States and vector–matrix multiplications
With the open-loop analysis completed (Fig. 3a), we plot the memory 
states (<w>) as a function of the programming voltage (VPROG). We define 
four equally distributed states (two-bit resolution) to be programmed 
as discrete weights in the matrix for the vector–matrix multiplication 
(Supplementary Fig. 20). To analyse the effectiveness of the proces-
sor for performing vector–matrix operations, we compare (Fig. 3b) 
the normalized theoretical (yTHEORY) value with the normalized experi-
mental (yEXP) value obtained on several dot-product operations. The 
linear regression of the experimental points shows a line with param-
eters a = 0.988 ± 0.008 and b = −0.129 ± 0.003 for yEXP = a × yTHEORY + b, 
whereas the shaded area corresponds to a 95% confidence interval. The 
ideal processor should converge to a = 1 and b = 0 with a confidence 
interval that converges to linear fitting. In our case, the processor has 
a linear behaviour converging to the ideal case, with a large spread 
and slight nonlinearity of the experimental values. We explain this 
behaviour by the non-ideality of the memories and the quantization 

error due to the limited resolution of the states. This shift in parameter 
b can be explained by the intrinsic transimpedance amplifier offset with 
memory leakage seen at yTHEORY = 0, but it does not affect the observed 
linear trend. We conclude that we can perform MAC operations with 
reasonable accuracy. This operation is needed for performing diverse 
types of algorithms, such as signal processing and inference in artificial 
neural networks.

Signal processing
Next, we configure this accelerator to perform signal processing to 
demonstrate a real-world scenario and application. For signal pro-
cessing, the input signal (x) is convoluted with a kernel (h), resulting 
in the processed signal (y). Depending on the nature of the kernel ele-
ments, different types of processing can be achieved. Here we limit 
ourselves to three different kernels that perform low-pass filtering, 
high-pass filtering and feedthrough. All the kernels run in parallel 
within a single processing cycle, demonstrating the efficiency of this 
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processor targeting data-centric problems by parallelized processing. 
More kernels could be added in parallel, limited only by the size of the 
matrix. Figure 4a shows the convolution operation and the different 
kernels used for processing the input signal. The strategy to encode 
negative kernel values into the conductance values of the memories is 
to split the kernel (h) into a kernel with only the positive values (h+) and 
one with the absolute values of the negative numbers (h−) and encode 
only the positive numbers with a direct relation with the conductance 
values (G). After the processing is realized, the outputs of the positive 
(y+) and negative (y−) kernels are subtracted (y+ – y−), resulting in the 
final signal (y).

Figure 4b shows the comparison between the original weights and 
the weights transferred into the memory matrix using the previously 
described open-loop programming scheme. To simplify the transfer, 
we normalize the weight values at each kernel by its maximum value. 
As a result, we observe a good agreement between the original and 
experimental values. Next, to verify the effectiveness of processing, 
we first construct our input signal (x) as a sum of sinusoidal waves with 
different frequencies. In this way, we can easily probe the behaviour of 
the filters at different frequencies without creating an overly complex 
signal. Since the signal has positive and negative values, the signal 
amplitude must fall within the linear region of device operation. Thus, 
we restrict the signal range from −100 to 100 mV at VREAD = 0. Figure 4c 
shows the fast Fourier transform of the simulated processed signals 
(left) and experimental signals (right). The grey line in both simulated 
and measured signals is the fast Fourier transform of each kernel, 
giving a guideline for the predicted behaviour of each operation. We 
highlight that the experimental processing of all three filters matches 
fairly well with the theoretical values as well as the prototype filter. 
Altogether, large-scale arrays of FGFETs based on 2D materials could 
be used for other applications such as image processing and inference 
with artificial neural networks.

Conclusions
We have reported the large-scale integration of 2D materials as the 
semiconducting channel in an in-memory processor. We demonstrated 
the reliability and reproducibility of our devices both in terms of char-
acterization and statistical similarity of the programming states in 
open-loop programming. The processor carries out vector–matrix 
multiplications and illustrates its functionality by performing discrete 
signal processing. Our approach could allow in-memory processors to 
reap the benefits of 2D materials and bring new functionality to edge 
devices for the Internet of Things.

Methods
Wafer-scale memory fabrication
The fabrication starts with a p-doped silicon substrate with a 
270-nm-thick SiO2 insulating layer. The first metal layer and FGFET 
gates were fabricated by photolithography using an MLA150 advanced 
maskless aligner with a bilayer 0.4-µm-thick LOR 5A/ 1.1-µm-thick AZ 
1512 resist. The 2 nm/40 nm Cr/Pt gate metals were evaporated using an 
electron-beam evaporator under a high vacuum. After resist removal by 
dimethyl sulfoxide, deionized water and O2 plasma are used to further 
clean and activate the surface for HfO2 deposition. The 30-nm-thick 
HfO2 blocking oxide is deposited by thermal atomic layer deposition 
using TEMAH and water as precursors with the deposition chamber 
set at 200 °C. The 5 nm Pt floating gates were patterned by photoli-
thography and deposited using the same process as described previ-
ously. With the same atomic layer deposition system, we deposit the 
7-nm-thick HfO2 tunnel oxide layer with the same process mentioned 
before. Next, vias are exposed using a single-layer 1.5-µm-thick ECI 
3007 photoresist and etched by Cl2/BCl3 chemistry reactive ion etch-
ing. After the transfer of MoS2 onto the substrate, patterning it with 
photolithography using a 2-µm-thick nLOF resist and etching by O2 
plasma. Drain–source electrodes are patterned by photolithography 

and 2 nm/60 nm Ti/Au is deposited by electron-beam evaporation. 
To increase the adhesion of contacts and MoS2 onto the substrate, a 
200 °C annealing step is performed in a high vacuum. The devices have 
a width/length ratio of 49.5 µm/3.1 µm.

Device passivation
The fabricated device is first wire-bonded onto a 145-pin pin-grid-array 
chip carrier. The device is heated inside an Ar glovebox at 135 °C for 12 h, 
which removes the adsorbed water from the device surface. After in situ 
annealing in the glovebox, a lid is glued onto the chip carrier using a 
high-vacuum epoxy and cured in an Ar atmosphere. This protects the 
device from oxygen and water.

Transfer procedure
The MOCVD-grown material is first spin coated with PMMA A2 at 
1,500 r.p.m. for 60 s and baked at 180 °C for 5 min. Next, we attach a 
135 °C thermal release tape onto the MoS2 sample and detach it from 
sapphire in deionized water. After this, we dry the film and transfer it 
onto the patterned substrate. Next, we bake the stack at 55 °C for 1 h. 
We remove the thermal release tape by heating it on the hot plate at 
130 °C. Next, we immerse the sample in an acetone bath for cleaning the 
tape polymer residues. Finally, we transfer the wafer to an isopropanol 
bath and dry it in air.

MOCVD growth
Monolayer MoS2 was grown using the MOCVD method. Mo(CO)6, 
Na2MoO4 and diethyl sulfide were used as precursors. NaCl was spin 
coated as a catalyst. A pre-annealed three-inch c-plane sapphire wafer 
with a small off-cut angle (<0.2°) was used as a growth substrate (Uni-
versityWafer). The chemical vapour deposition reaction was per-
formed using a home-built furnace system with a four-inch quartz 
tube reactor and mass flow controllers connected with Ar, H2, O2 and 
metal–organic precursors (Mo(CO)6 and diethyl sulfide). For the MoS2 
crystal growth, a reactor was heated to 870 °C at ambient pressure 
for 20 min.

Electrical measurements
The electrical measurements were performed using a custom device 
interface board connected to a CompactRIO (cRIO-9056) running a 
real-time LabVIEW 2020 server. We installed the NI-9264 (16-channel 
analogue output), NI-9205 (32-channel analogue inputs) and NI-9403 
(digital input/output) modules.

Data availability
The data that support the findings of this study are available via Zenodo 
at https://doi.org/10.5281/zenodo.8383470.
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