Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Multiplexed superconducting qubit control at millikelvin temperatures with a low-power cryo-CMOS multiplexer

Abstract

Large-scale superconducting quantum computers require the high-fidelity control and readout of large numbers of qubits at millikelvin temperatures, resulting in a massive input–output bottleneck. Cryo-electronics based on complementary metal–oxide–semiconductor technology could provide a scalable and versatile solution. However, detrimental effects due to cross-coupling between the qubits and the electronic and thermal noise generated during cryo-electronics operation need to be avoided. Here we report a low-power radio-frequency multiplexing cryo-electronics system that operates below 15 mK with a minimal cross-coupling. We benchmark its performance by interfacing the system with a superconducting qubit and observe that the qubit’s relaxation times are unaffected, whereas the coherence times are marginally affected in both static and dynamic operations. Using the multiplexer, single-qubit gate fidelities above 99.9%—that is, above the threshold for surface-code-based quantum error correction—can be achieved with appropriate thermal filtering. We also demonstrate time-division multiplexing capabilities by dynamically windowing calibrated qubit control pulses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Routing microwave signals using cryo-multiplexers.
Fig. 2: Power and RF performance of the cryo-CMOS multiplexer.
Fig. 3: Benchmarking the cryo-CMOS multiplexer performance using a high-coherence qubit.
Fig. 4: Randomized benchmarking and TDM using a cryo-CMOS multiplexer.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Code availability

The codes that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Montanaro, A. Quantum algorithms: an overview. npj Quantum Inf. 2, 15023 (2016).

    Google Scholar 

  2. Preskill, J. Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018).

    Google Scholar 

  3. Bravyi, S., Gosset, D. & König, R. Quantum advantage with shallow circuits. Science 362, 308–311 (2018).

    MathSciNet  MATH  Google Scholar 

  4. Daley, A. J. et al. Practical quantum advantage in quantum simulation. Nature 607, 667–676 (2022).

    Google Scholar 

  5. Zhong, H.-S. et al. Quantum computational advantage using photons. Science 370, 1460–1463 (2020).

    Google Scholar 

  6. Bruzewicz, C. D., Chiaverini, J., McConnell, R. & Sage, J. M. Trapped-ion quantum computing: progress and challenges. Appl. Phys. Rev. 6, 021314 (2019).

    Google Scholar 

  7. Mills, A. R. et al. Two-qubit silicon quantum processor with operation fidelity exceeding 99%. Sci. Adv. 8, eabn5130 (2022).

    Google Scholar 

  8. Gong, M. et al. Quantum walks on a programmable two-dimensional 62-qubit superconducting processor. Science 372, 948–952 (2021).

    Google Scholar 

  9. Wang, C. et al. Towards practical quantum computers: transmon qubit with a lifetime approaching 0.5 milliseconds. npj Quantum Inf. 8, 3 (2022).

    Google Scholar 

  10. Zhao, Y. et al. Realization of an error-correcting surface code with superconducting qubits. Phys. Rev. Lett. 129, 030501 (2022).

    Google Scholar 

  11. Krinner, S. et al. Realizing repeated quantum error correction in a distance-three surface code. Nature 605, 669–674 (2022).

    Google Scholar 

  12. Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019).

    Google Scholar 

  13. Wu, Y. et al. Strong quantum computational advantage using a superconducting quantum processor. Phys. Rev. Lett. 127, 180501 (2021).

    Google Scholar 

  14. Zhu, Q. et al. Quantum computational advantage via 60-qubit 24-cycle random circuit sampling. Sci. Bull. 67, 240–245 (2022).

    Google Scholar 

  15. Krantz, P. et al. A quantum engineer’s guide to superconducting qubits. Appl. Phys. Rev. 6, 021318 (2019).

    Google Scholar 

  16. Krinner, S. et al. Engineering cryogenic setups for 100-qubit scale superconducting circuit systems. EPJ Quantum Technol. 6, 2 (2019).

    Google Scholar 

  17. Córcoles, A. D. et al. Exploiting dynamic quantum circuits in a quantum algorithm with superconducting qubits. Phys. Rev. Lett. 127, 100501 (2021).

    Google Scholar 

  18. Fowler, A. G., Mariantoni, M., Martinis, J. M. & Cleland, A. N. Surface codes: towards practical large-scale quantum computation. Phys. Rev. A 86, 032324 (2012).

    Google Scholar 

  19. Gidney, C. & Ekerå, M. How to factor 2048 bit RSA integers in 8 hours using 20 million noisy qubits. Quantum 5, 433 (2021).

    Google Scholar 

  20. Franke, D. P., Clarke, J. S., Vandersypen, L. M. K. & Veldhorst, M. Rent’s rule and extensibility in quantum computing. Microprocess. Microsyst. 67, 1–7 (2019).

    Google Scholar 

  21. Reilly, D. J. Challenges in scaling-up the controlinterface of a quantum computer. In 2019 IEEE International Electron Devices Meeting (IEDM) 31.7.1–31.7.6 (IEEE, 2019).

  22. Patra, B. et al. Cryo-CMOS circuits and systems for quantum computing applications. IEEE J. Solid-State Circuits 53, 309–321 (2018).

    Google Scholar 

  23. Reilly, D. J. Engineering the quantum-classical interface of solid-state qubits. npj Quantum Inf. 1, 15011 (2015).

    Google Scholar 

  24. Ward, D. R., Savage, D. E., Lagally, M. G., Coppersmith, S. N. & Eriksson, M. A. Integration of on-chip field-effect transistor switches with dopantless Si/SiGe quantum dots for high-throughput testing. Appl. Phys. Lett. 102, 213107 (2013).

    Google Scholar 

  25. Al-Taie, H. et al. Cryogenic on-chip multiplexer for the study of quantum transport in 256 split-gate devices. Appl. Phys. Lett. 102, 243102 (2013).

    Google Scholar 

  26. Puddy, R. K. et al. Multiplexed charge-locking device for large arrays of quantum devices. Appl. Phys. Lett. 107, 143501 (2015).

    Google Scholar 

  27. Pauka, S. J. et al. Characterizing quantum devices at scale with custom cryo-CMOS. Phys. Rev. Appl. 13, 054072 (2020).

    Google Scholar 

  28. Pauka, S. J. et al. A cryogenic CMOS chip for generating control signals for multiple qubits. Nat. Electron. 4, 64–70 (2021).

    Google Scholar 

  29. Paquelet Wuetz, B. et al. Multiplexed quantum transport using commercial off-the-shelf CMOS at sub-kelvin temperatures. npj Quantum Inf. 6, 43 (2020).

    Google Scholar 

  30. Van Dijk, J. P. G. et al. A scalable cryo-CMOS controller for the wideband frequency-multiplexed control of spin qubits and transmons. IEEE J. Solid-State Circuits 55, 2930–2946 (2020).

    Google Scholar 

  31. Bardin, J. C. et al. Design and characterization of a 28-nm bulk-CMOS cryogenic quantum controller dissipating less than 2 mW at 3 K. IEEE J. Solid-State Circuits 54, 3043–3060 (2019).

    Google Scholar 

  32. Kang, K. et al. A cryo-CMOS controller IC with fully integrated frequency generators for superconducting qubits. In 2022 IEEE International Solid-State Circuits Conference (ISSCC) 65, 362–364 (IEEE, 2022).

  33. Yeh, J.-H. & Anlage, S. M. In situ broadband cryogenic calibration for two-port superconducting microwave resonators. Rev. Sci. Instrum. 84, 034706 (2013).

    Google Scholar 

  34. Wagner, A., Ranzani, L., Ribeill, G. & Ohki, T. A. Demonstration of a superconducting nanowire microwave switch. Appl. Phys. Lett. 115, 172602 (2019).

    Google Scholar 

  35. Naaman, O., Abutaleb, M. O., Kirby, C. & Rennie, M. On-chip Josephson junction microwave switch. Appl. Phys. Lett. 108, 112601 (2016).

    Google Scholar 

  36. Pechal, M. et al. Superconducting switch for fast on-chip routing of quantum microwave fields. Phys. Rev. Appl. 6, 024009 (2016).

    Google Scholar 

  37. Hornibrook, J. M. et al. Cryogenic control architecture for large-scale quantum computing. Phys. Rev. Appl. 3, 024010 (2015).

    Google Scholar 

  38. Lecocq, F. et al. Control and readout of a superconducting qubit using a photonic link. Nature 591, 575–579 (2021).

    Google Scholar 

  39. McDermott, R. et al. Quantum–classical interface based on single flux quantum digital logic. Quantum Sci. Technol. 3, 024004 (2018).

    Google Scholar 

  40. Gonzalez-Zalba, M. F. et al. Scaling silicon-based quantum computing using CMOS technology. Nat. Electron. 4, 872–884 (2021).

    Google Scholar 

  41. Potočnik, A. et al. Millikelvin temperature cryo-CMOS multiplexer for scalable quantum device characterisation. Quantum Sci. Technol. 7, 015004 (2022).

    Google Scholar 

  42. Ruffino, A. A cryo-CMOS chip that integrates silicon quantum dots and multiplexed dispersive readout electronics. Nat. Electron. 5, 53–59 (2022).

  43. Schaal, S. et al. A CMOS dynamic random access architecture for radio-frequency readout of quantum devices. Nat. Electron. 2, 236–242 (2019).

    Google Scholar 

  44. Beckers, A. et al. Characterization and modeling of 28-nm FDSOI CMOS technology down to cryogenic temperatures. Solid-State Electron. 159, 106–115 (2019).

    Google Scholar 

  45. Yang, C. H. et al. Operation of a silicon quantum processor unit cell above one kelvin. Nature 580, 350–354 (2020).

    Google Scholar 

  46. Verjauw, J. et al. Path toward manufacturable superconducting qubits with relaxation times exceeding 0.1 ms. npj Quantum Inf. 8, 93 (2022).

    Google Scholar 

  47. Blais, A., Grimsmo, A. L., Girvin, S. M. & Wallraff, A. Circuit quantum electrodynamics. Rev. Mod. Phys. 93, 025005 (2021).

    MathSciNet  Google Scholar 

  48. Yan, F. et al. The flux qubit revisited to enhance coherence and reproducibility. Nat. Commun. 7, 12964 (2016).

    Google Scholar 

  49. Gustavsson, S. et al. Suppressing relaxation in superconducting qubits by quasiparticle pumping. Science 354, 1573–1577 (2016).

    Google Scholar 

  50. Heinsoo, J. et al. Rapid high-fidelity multiplexed readout of superconducting qubits. Phys. Rev. Appl. 10, 034040 (2018).

    Google Scholar 

  51. Zhang, Z. et al. A d.c.-32GHz 7-bit passive attenuator with capacitive compensation bandwidth extension technique in 55 nm CMOS. In 2020 IEEE/MTT-S International Microwave Symposium (IMS) 1303–1306 (IEEE, 2020).

  52. Knill, E. et al. Randomized benchmarking of quantum gates. Phys. Rev. A 77, 012307 (2008).

    Google Scholar 

  53. Magesan, E., Gambetta, J. M. & Emerson, J. Scalable and robust randomized benchmarking of quantum processes. Phys. Rev. Lett. 106, 180504 (2011).

    Google Scholar 

  54. Vepsäläinen, A. et al. Improving qubit coherence using closed-loop feedback. Nat. Commun. 13, 1932 (2022).

    Google Scholar 

  55. Chen, Z. Metrology of Quantum Control and Measurement in Superconducting Qubits. PhD thesis, Univ. of California, Santa Barbara (2018).

  56. McKay, D. C., Wood, C. J., Sheldon, S., Chow, J. M. & Gambetta, J. M. Efficient Z gates for quantum computing. Phys. Rev. A 96, 022330 (2017).

    Google Scholar 

  57. Motzoi, F., Gambetta, J. M., Rebentrost, P. & Wilhelm, F. K. Simple pulses for elimination of leakage in weakly nonlinear qubits. Phys. Rev. Lett. 103, 110501 (2009).

    Google Scholar 

  58. Johansson, J. R., Nation, P. D. & Nori, F. QuTiP 2: a Python framework for the dynamics of open quantum systems. Comput. Phys. Commun. 184, 1234–1240 (2013).

    Google Scholar 

  59. Shan, Z., Zhu, Y. & Zhao, B. A high-performance compilation strategy for multiplexing quantum control architecture. Sci. Rep. 12, 7132 (2022).

    Google Scholar 

  60. Rasmussen, S. E. et al. Superconducting circuit companion—an introduction with worked examples. PRX Quantum 2, 040204 (2021).

    Google Scholar 

  61. Yan, F. et al. Distinguishing coherent and thermal photon noise in a circuit QED system. Phys. Rev. Lett. 120, 260504 (2018).

    Google Scholar 

  62. Clerk, A. A., Devoret, M. H., Girvin, S. M., Marquardt, F. & Schoelkopf, R. J. Introduction to quantum noise, measurement, and amplification. Rev. Mod. Phys. 82, 1155–1208 (2010).

    MathSciNet  MATH  Google Scholar 

  63. Magesan, E., Gambetta, J. M. & Emerson, J. Characterizing quantum gates via randomized benchmarking. Phys. Rev. A 85, 042311 (2012).

    Google Scholar 

  64. O’Malley, P. J. J. et al. Qubit metrology of ultralow phase noise using randomized benchmarking. Phys. Rev. Appl. 3, 044009 (2015).

    Google Scholar 

Download references

Acknowledgements

We gratefully thank the imec P-line, operational support and the MCA team. This work was supported in part by the imec Industrial Affiliation Program on Quantum Computing. The project leading to this application has received funding from the ECSEL Joint Undertaking (JU) under grant agreement no. 101007322. The JU receives support from the European Union’s Horizon 2020 research and innovation programme as well as Germany, France, Belgium, Austria, Netherlands, Finland and Israel (please visit the project website at https://www.matqu.eu/ for more information).

Author information

Authors and Affiliations

Authors

Contributions

R.A. and A.P. planned the experiment. S.B. designed the multiplexer. A.P. designed the qubit samples. T.I. and D.P.L. fabricated the qubit samples, with contributions from D.W. R.A. and A.P. performed the measurement and analysis of qubit data at the base temperature. S.B. and A.G. performed the measurements and analysis of the ESD protection cells from room temperature to 4 K. R.A., A.P., J.V., J.V.D. and A.M.V. prepared the experimental setup and methods. R.A. and A.P. prepared the manuscript, with input from all authors. A.P., I.P.R., J.C., K.D.G., B.G., M.M., G.G. and F.C. supervised and coordinated the project.

Corresponding author

Correspondence to R. Acharya.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Electronics thanks Masoud Babaie and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Experimental measurement setup.

Room-temperature electronics and dilution refrigerator wiring for the measurement of the cryo-CMOS RF multiplexer performance with superconducting qubits.

Extended Data Table 1 Device parameters

Supplementary information

Supplementary Information

Supplementary Sections 1–7, Figs. 1–5 and Table 1.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acharya, R., Brebels, S., Grill, A. et al. Multiplexed superconducting qubit control at millikelvin temperatures with a low-power cryo-CMOS multiplexer. Nat Electron 6, 900–909 (2023). https://doi.org/10.1038/s41928-023-01033-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41928-023-01033-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing