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Device-scale atomistic modelling of 
phase-change memory materials

Yuxing Zhou    1,2, Wei Zhang    2  , En Ma    2 & Volker L. Deringer    1 

Computer simulations can play a central role in the understanding of 
phase-change materials and the development of advanced memory 
technologies. However, direct quantum-mechanical simulations are 
limited to simplified models containing a few hundred or thousand atoms. 
Here we report a machine-learning-based potential model that is trained 
using quantum-mechanical data and can be used to simulate a range of 
germanium–antimony–tellurium compositions—typical phase-change 
materials—under realistic device conditions. The speed of our model 
enables atomistic simulations of multiple thermal cycles and delicate 
operations for neuro-inspired computing, specifically cumulative SET and 
iterative RESET. A device-scale (40 × 20 × 20 nm3) model containing over 
half a million atoms shows that our machine-learning approach can directly 
describe technologically relevant processes in memory devices based on 
phase-change materials.

Random-access memory based on phase-change materials (PCMs) is 
a leading candidate for the development of non-volatile memory and 
neuro-inspired computing technologies1–4. PCMs can be rapidly and 
reversibly switched between two solid-state phases via crystallization 
(SET) and amorphization (RESET). Information is digitally encoded by 
a large physical property contrast between the amorphous and crys-
talline phases, such as electrical conductivity and optical reflectivity.  
A highly used set of PCMs are located on the quasi-binary GeTe–Sb2Te3 
(GST) line of chemical compositions. For example, Ge2Sb2Te5 and Ge8S-
b2Te11 are used in rewriteable optical discs1, Ge1Sb2Te4 and Ge2-Sb2Te5 
are used for cross-point random-access memory products5, and 
Sb2Te3-based PCMs with suitable dopants or nano-confinement layers 
are promising candidates for universal memory6,7 and neuro-inspired 
computing devices8. Ge2Sb2Te5 can also be integrated with waveguides 
to achieve various on-chip non-volatile photonic applications, includ-
ing memory, computing, colour rendering and nanopixel displays9.

Computer simulations based on density functional theory (DFT) 
and DFT-driven ab initio molecular dynamics (AIMD) have provided 
key insights into the structural features10–12, bonding contrast13,14 
and crystallization kinetics of GST15–18. However, the computational 
cost of AIMD prevents the simulations of systems beyond a thousand 
atoms and processes taking more than a few nanoseconds18. At the 

same time, the structural and chemical complexity in PCMs requires 
quantum-mechanically accurate methods rather than empirically 
parameterized force-field models. These requirements have made 
it challenging to simulate more realistic scenarios encountered in 
devices: temperature gradients induced by Joule heating by the pro-
gramming pulses, the expansion and shrinking of active volume during 
switching, the evolution of local chemical composition and model 
system sizes of tens of nanometres, which are required to account for 
real-world device geometries.

Machine learning (ML)-based interatomic potential models are 
an emerging approach that aim to combine the efficiency of empiri-
cal potentials and the accuracy of DFT19. Using a reference database of 
small-scale DFT computations, the potential energy surface becomes 
the regression target for an ML model for fast and accurate simulations. 
In 2012, an artificial neural network ML potential model for GeTe was 
developed20, which has since been used to study crystallization21, age-
ing22 and thermal transport23. An ML potential fitted using the Gaussian 
approximation potential (GAP) framework was subsequently applied 
to the ternary PCM Ge2Sb2Te5 (refs. 24,25) and used to assess the struc-
tural properties and mid-gap electronic states of the amorphous ‘zero 
bit’26,27. Neural network potentials for elemental antimony (monatomic 
memory) and Ge2Sb2Te5 have also been reported28–30. However, so far, 
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are nearly identical with the DFT data (Supplementary Table 3). For 
disordered structures, Extended Data Figs. 1 and 2 show that the radial, 
angular and ring-size distributions of liquid and amorphous GST phases 
are faithfully described. Note that the composition Ge4Sb2Te7 (formally 
‘4 GeTe + 1 Sb2Te3’) was not explicitly included during training; none-
theless, key structural features are well described. All the amorphous 
models contain a non-negligible fraction of homopolar bonds (absent 
in the respective crystals), for example, Ge–Ge, typically formed 
during rapid quenching. The fraction of homopolar bonds is well 
reproduced across the series of compounds studied (Extended Data  
Fig. 1c), as well as the energy dependence on the homopolar bond 
count in amorphous GeTe, which has been linked to ageing and resist-
ance drift (Supplementary Fig. 5)34. The onset of a Peierls distortion is 
a more subtle structural effect in PCMs, which affects the size of the 
bandgap in both crystalline and amorphous GST34, and is therefore 
directly relevant to applications in electronic memories. The degree 
of Peierls distortion can be assessed by comparing the short-to-long 
bond ratio in close-to-linear environments, which we evaluate using a 
three-body correlation function. Extended Data Fig. 1d,e shows that our 
ML potential captures this effect very well: the distortion ‘fingerprints’ 
for all the four compositions studied are similar between GAP-MD (red) 
and the AIMD reference (blue).

We also performed GAP-MD simulations with different stoichio-
metric compositions, off the GST quasi-binary line, to account for the 
p-type semiconducting behaviour observed in experiments35. Specially, 
we considered Ge2Sb1.8Te5 (cation deficient, p type) and Ge2.2Sb2Te5 
(cation rich, n type) following previous AIMD work36. Structural indi-
cators still yield close similarity between GAP-MD and AIMD (Supple-
mentary Fig. 4). Although the above compositions are slightly away 
from the training domain, their local bonding patterns were ‘learned’ 
through sufficient sampling over the structural and chemical space. All 
the above analyses demonstrate the compositionally transferable and 
defect-tolerant nature of the current ML model, enabling efficient MD 
simulations of amorphous GST with local compositional fluctuations, 
which are expected to spontaneously occur on repeated programming 
operations in memory devices.

Single and cumulative switching
Having validated the ML modelling approach, increasingly challenging 
use cases leading up to device operation were modelled, beginning with 
the crystallization (SET) process and its atomistic modelling. Figure 2a 
shows a state-of-the-art AIMD crystallization simulation of  
Ge1Sb2Te4 over 600 ps at 600 K, with colour coding for the per-atom 
similarity ̄k (ref. 18). The model contains 1,008 atoms (3.0 × 2.9 × 4.2 nm3), 
with two fixed crystal-like layers representing the crystal–amorphous 
boundary encountered in devices (Fig. 2a). Our GAP-MD simulation 
successfully reproduces the crystallization process (Fig. 2b), and the 
resulting structure similarly contains a random distribution of vacancies 
and a number of antisite defects. This particular type of GAP-MD run 
can be completed within days on a high-performance computing sys-
tem, whereas the corresponding AIMD simulation18 required half a year 
of real time and shows much less favourable scaling behaviour.

In addition to SET and RESET, two further operations—cumulative 
SET and iterative RESET—are used for neuro-inspired computing4. In 
these cases, the programming pulse can be divided into a train of pulses 
with varied amplitude and duration37, and the change in electrical resist-
ance38 or optical transmission39 as a function of the number of pulses 
can be used to mimic synaptic learning rules. Using the GAP ML model, 
we carried out cumulative SET simulations (Fig. 2c and Supplemen-
tary Video 1). Differences in the initial configuration, pulse width and 
maximum temperature affect the progressive structural changes, and 
the evolution of structural order determines the electrical and optical 
properties of the intermediate states. These simulations represent the 
situation inside one grain of rock-salt-like GST (with the grain size vary-
ing from several nanometres to several tens of nanometres)40,41. Taking 

these models have been designed and verified for specific composi-
tions; although the extrapolation of the GAP framework to binary 
Sb2Te3 has been explored31, a comprehensive model for the entire GST 
quasi-binary line remains unavailable.

In this Article, we show that ML-driven modelling can enable fully 
atomistic device-scale simulations of phase changes along the GST 
compositional line under realistic device geometries and conditions. 
ML is used to fit interatomic potentials using the GAP framework for 
different GST phases and compositions, which are iteratively updated 
to create the final reference database. The simulations of cumulative 
SET and iterative RESET processes under conditions relevant for prac-
tical operation, such as non-isothermal heating, reveal the atomistic 
processes and mechanisms in PCMs on the ten-nanometre length 
scale. The speed and accuracy gain of this approach allows the simula-
tion of a cross-point memory device in a model containing more than 
500,000 atoms.

ML-driven modelling of Ge–Sb–Te PCMs
The quality of any ML model is dependent on the quality of its input 
data, and the performance of an ML potential largely depends on the 
quality of the reference database to which it is fitted32. Here we intro-
duce a dataset of representative structural models (data locations) and 
DFT-computed energies and forces (data labels) as a platform for fitting 
ML potentials for GST PCMs. Starting with an initial set including liquid 
and amorphous configurations from AIMD, we iteratively explored the 
structural space with evolving ML potentials and progressively trained 
the models to represent more complex scenarios (Fig. 1a). Iterative 
training allows for efficient reference data generation32, because no 
further AIMD is required beyond the initial set of data (which we call 
iter-0). We started by performing GAP-driven melt–quench simulations, 
of the type that are common in the field (iter-1), and then followed with 
more specialized simulations that reflected the particular requirements 
of the domain of application (iter-2). The latter simulations allow the 
model to ‘learn’ microscopic information most relevant to GST, that 
is, about melting and crystallization processes in which phases with 
different degrees of structural order coexist. The iter-2 part is central, 
because it gradually explores and includes the domain knowledge that 
is relevant to how the PCM functions and evolves in a real-world action.

We illustrate the composition of the reference database in Fig. 1b. 
In this two-dimensional structural map, the distance between any two 
points indicates the smooth overlap of atomic positions (SOAP) kernel 
similarity33 of the corresponding configurations. The areas labelled 
(1)–(3) represent crystalline structures included from the start (Fig. 1b, 
grey). The first two comprise ordered and disordered GST, respectively, 
for which the key structural motif is an (often defective) octahedral 
environment. These points are distinct from area (3), representing 
diamond-type Ge. Area (4) covers liquid and amorphous GST configu-
rations, mostly added during early iterations (Fig. 1b, yellow). Area (5) 
reflects phase-transition snapshots, added during the domain-specific 
series (Fig. 1b, red); accordingly, the points are located between the 
fully ordered and fully disordered regions of the map.

Once the full database was available, a final ML model was fitted, 
which we refer to as GST-GAP-22. Details of the model construction 
and validation are given in Supplementary Notes 1–3. The numerical 
performance of this potential was assessed by cross-validation on 
the database itself and by testing on out-of-sample configurations 
separately generated via AIMD. The error analysis suggests that the 
model has ‘learned’ its quantum-mechanical reference data largely 
to within the regularization (the imposed uncertainty during the fit; 
Supplementary Note 2). We fitted GST-GAP-22 to the reference data 
obtained with the PBEsol exchange–correlation functional, but also 
show that a version based on a different functional can be generated 
by recomputing the DFT data labels (Supplementary Note 4).

The ML model accurately predicts the structural properties of GST 
materials. For crystalline phases, GAP-optimized lattice parameters 
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into account the randomness in the nucleation of GST, cumulative SET 
operations can emulate integrate-and-fire dynamics for the construc-
tion of stochastic phase-change neurons42.

The simulations in Fig. 2a,b are at the system-size limit of DFT. 
Therefore, they describe crystal growth in a necessarily simplified 
way, along one selected direction only (here the [111] direction). ML 
potentials make it possible to surpass this limitation19: in Fig. 2d, we 
demonstrate this for a larger-scale crystallization simulation to obtain 
a polycrystalline state, which is typically formed in nanoscale devices. 
Three crystalline seeds (of about 100 atoms each) were embedded in 
this model, bypassing the stochastic nucleation process (Supplemen-
tary Fig. 7). The extracted growth speed averaged over three grains 
is ~0.7 m s–1 at 600 K, consistent with ultrafast differential scanning 
calorimetry experiments43. The large-scale GAP-MD simulations 
point towards a way to conceptually connect the previously shown 
small-scale models and the following real-device-size simulations.

Non-isothermal heating
Different types of scenario in real devices require different model-
ling strategies (Fig. 3 and Extended Data Fig. 3). The SET process in 
encapsulated electronic cells is commonly described in isothermal 
simulations (NVT ensemble; Fig. 2). In contrast, simulating the iterative 
RESET process requires the use of large-scale constant-energy simu-
lations (NVE ensemble). The widely used mushroom-type electronic 

device was used to model such an operation (Fig. 3a). We constructed 
a 33 × 5 × 20 supercell expansion of a rock-salt-like Ge1Sb2Te4 model 
(23,100 atoms), and applied energy pulses to an area described by a 
half-cylinder shape at the bottom of the x–z plane (Fig. 3b). This setup 
represents the middle slab of mushroom PCM cells, with a cross-section 
of around 20 × 12 nm2. The top four atomic layers were fixed to prevent 
unwanted thermal transport to the bottom area through the periodic 
boundary conditions: in a real device, there would be a thermal barrier 
in contact with the GST material. We emphasize that in state-of-the-art 
mushroom-type devices41, the diameter of the heater can be scaled 
down to as small as ~3 nm. Therefore, the expected effective heating 
area is directly mirrored by our simulation setup (Fig. 3).

After a short NVT ensemble simulation at 300 K, the ensemble was 
switched to NVE and additional energies of 55 eV ps–1 were imposed on 
the atoms inside the focal area as kinetic energy over 30 ps. The NVE 
simulation was continued for another 70 ps. In total, this 30 ps energy 
pulse added 1,650 eV (0.264 fJ) of thermal energy to the model, result-
ing in a disordered area with a base length of ~7 nm (Fig. 3b). Then, 
we computed the local temperature profile based on the velocity of 
atoms collected on a two-dimensional grid. Figure 3c shows a clear 
radial temperature gradient from the heating centre towards the outer 
shell. In parallel, we performed another NVE simulation with an energy 
pulse of 3,900 eV (0.625 fJ) imposed on a larger focal area over 30 ps 
(Fig. 3d). The stronger pulse generated a larger disordered area with a 
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base length of ~14 nm, creating a more extended gradient profile with 
a higher average temperature (Fig. 3e). This ML-driven MD simulation 
protocol closely resembles the iterative RESET operation in devices, 
providing real-time atomic-scale information beyond what has been 
revealed in experimental observations as well as finite element method 
simulations2. The evolution of the temperature gradient can be traced 
not only with sub-nanoscale spatial resolution but also with an ultrafine 
time resolution at the femtosecond level (Supplementary Video 2 and 
Supplementary Fig. 9).

Full device-scale simulations
Next, the capability for a structural model of real device size, correspond-
ing to a cross-point product currently used in electronic memories5, is 
demonstrated. Figure 4a shows the schematic of the crossbar array, 
which consists of a PCM memory layer (composition close to Ge1Sb2Te4), 

an ovonic threshold switching (OTS) selector layer and several buffer 
layers between PCM, OTS and electrodes. The rest of the volume is filled 
with dielectric materials5. When programming, the electric current flows 
through the OTS layer after reaching a threshold voltage, and induces 
Joule heating to trigger the phase transition of the PCM. The size of the 
PCM region was reported as ~20 × 20 × 40 nm3 (ref. 5). The initial state 
is taken to be the layered trigonal phase due to unavoidable thermal 
annealing during the back-end-of-line stage for PCM integration2. We 
constructed a Ge1Sb2Te4 supercell of the same size, containing more 
than half a million atoms in a layered configuration (30 septuple-layer 
blocks, with each block arranged in the stacking sequence Te–Sb–Te–
Ge–Te–Sb–Te), and melted the model using a short (10 ps) but very high 
energy pulse with a high energy gradient. Such a short time window is 
experimentally accessible in principle: melting of GST can be achieved 
in 5–10 ps, as evidenced by femtosecond laser experiments44.
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Fig. 2 | Thermal cycles and cumulative SET operation. a, Snapshots from a 
1,008-atom constant-temperature AIMD crystallization trajectory for Ge1Sb2Te4 
in the [111] direction, taken from ref. 18 and visualized in the same style. Colour 
coding indicates the SOAP-based ̄k  crystallinity18, illustrating the gradual 
transition from amorphous (red) to crystalline (yellow), and the occurrence of 
antisite defects (black). b, The same crystallization simulation carried out using 
GAP-MD. c, GAP-driven simulations of cumulative SET processes. After each 
RESET (amorphizing) pulse above the melting point of Ge1Sb2Te4, a series of small 
SET (crystallizing) pulses were applied, with the same simulation setup as that 

shown in b. In this proof of concept, three different kinds of pulse with different 
amplitudes and durations were considered: 650 K pulses of 100 ps duration, 
600 K pulses of 100 ps duration and 600 K pulses of 50 ps duration. Each data 
point corresponds to a configuration after an individual pulse, and the lines are 
guides to the eye; the starting point of the plot (corresponding to the time at 0 ns) 
refers to the fully recrystallized configuration from the simulation shown in b. d, 
Crystallization of Ge1Sb2Te4 with multiple nuclei, leading to the formation of a 
polycrystalline structure over 2 ns.
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Figure 4b illustrates progressive disordering during melting. Lay-
ered structures remain early on (evident in the plot at 2 ps). On further 
heating, chemical disordering proceeded vertically from the bottom to 
the top, resulting in a gradient of ordering (Fig. 4b and Supplementary 
Video 3). At 6 ps, the bottom slab still shows some remaining chemical 
order, but it appears entirely disordered after 10 ps. The top region, 
especially the structural building blocks close to the heat barrier (near 
z = 40 nm), is only partially melted after 10 ps. In electronic devices, the 
applied heat dissipates mostly through electrodes (of very high thermal 
conductivity), quenching the molten state to form the amorphous 
phase. Here the added kinetic energy was gradually taken out from each 
atom over another 40 ps (Fig. 4c), leading to the gradual formation of 
the amorphous phase (Fig. 4d). Based on ML-driven MD, we can thus 
obtain the evolution of temperature gradients with sub-nanometre 
spatial resolution (Fig. 4c), revealing finer atomic details of the heat 
dissipation process compared with coarse-grained finite element 
method simulations.

The RESET energy is calculated as 60 fJ, which could be used as 
the theoretical limit of the minimum power consumption for the initial 
operation per bit (the most power-consuming step in devices). This is 
still an approximation because the entire amount of energy was directly 
assigned to the atoms with no energy dissipation to the surrounding 
layers. Although the present capability demonstration focuses on the 
initial ground state, similar calculations and analyses could also be car-
ried out for more complex structures, including realistic models of the 
rock-salt-like phase with grain boundaries or mixed crystalline/amor-
phous structures. Moreover, the simulated heating pulse can be adjusted 
to more realistic and complex programming conditions, considering vari-
ous pulse amplitudes, durations and shapes, which shall help to guide the 
optimization of programming schemes for better device performance.

Finally, the inclusion of electric-field effects in simulations is 
addressed, which is related to electromigration in the liquid state and 
ultimately to device failure. Since the cumulated transient electric 

fields on extensive cycling trigger substantial electromigration over 
more than millions of SET and RESET operations in GST devices, directly 
reproducing the entire process is not feasible. Nonetheless, as a proof 
of concept, we can accelerate such electromigration processes using a 
large electric field of 0.03 eV Å–1, applied from the bottom to the top of 
the cell, at 1,000 K. The resulting ML-driven MD trajectory (Extended 
Data Fig. 4) shows a clear migration of cation-like (anion-like) ions to 
the negative (positive) side. We expect that such a combination of 
ML potentials with electric-field effects will play a central role in the 
realistic modelling of PCM devices in the future.

Conclusions
We have reported an ML model that can be used to increase the speed 
and accuracy of simulations of the PCM GST, enabling fully atomistic 
simulations of memory devices under realistic device geometry and 
programming conditions. Since the computational requirements of 
the ML-driven simulations increase linearly with the model system 
size45, they can be readily extended to larger and more complex device 
geometries, and over longer timescales, using increasingly power-
ful computing resources. In addition to melting and crystal growth 
simulations, we expect that our ML model will allow for the sampling 
of nucleation and the atomic-scale observation of the formation of 
grain boundaries in large models of GST under isothermal conditions 
or with a temperature gradient. In combination with advanced sam-
pling techniques17, ML-driven simulations could, therefore, allow the 
determination of nucleation barrier and critical nucleus size for GST.

Future work could also incorporate interface effects on the sur-
rounding electrode and dielectric layers, an issue that is highly relevant 
to device engineering. For example, it has been reported46 that heat 
loss can be largely reduced by confining the PCM cell with aluminium 
oxide walls, but their direct atomic-scale impact on thermal vibrations 
at the interface and on the phase-transition capacity of PCMs cannot 
be studied by finite element method simulations alone. Atomistic ML 
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models with extended reference databases could be used to study this 
effect, as well as help to predict the trend in minimum RESET energy, 
crystallization time for different device geometries and microscopic 
failure mechanisms for better architecture design. Our work illustrates 
the potential role of ML-driven simulations in the design of individual 
PCM phases, as well as entire devices based on them.

Methods
ML potential fitting
The ML interatomic potentials were fitted using the GAP framework25 
and the SOAP structural descriptor33. A review of GAP and related 
methods is provided elsewhere32; Supplementary Notes 1–4 provide 
details specific to this work. Based on the iteratively constructed ref-
erence database (Fig. 1 and Supplementary Note 1), highly converged 
DFT data were obtained using CASTEP47 for the energies and forces of 
the reference structures (that is, database labelling).

Our fitted models provide accurate results for various GST com-
positions and phases (Supplementary Notes 2 and 3). The numerical 
accuracy was assessed by a fivefold cross-validation over the refer-
ence data and by testing on an external set of AIMD configurations 
not included in the training. We also performed a comprehensive 
validation based on physical properties, such as lattice parameters, 
computed relative energetic stability and structural features of the 
relevant GST structures.

MD simulations
ML-driven MD simulations were carried out using LAMMPS48 (https://
www.lammps.org/) with an interface to the GAP software (which is 
freely available for academic research at https://github.com/libAtoms/
QUIP). Different ensembles were used: canonical (constant volume 
and temperature; NVT), isobaric–isothermal (constant pressure and 
temperature; NPT) and microcanonical (constant volume and energy; 
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(20 × 20 × 40 nm3, containing 532,980 atoms). The melting process is triggered 
by a vertical heating pulse with additional energy (containing 60 fJ in total) 
from the bottom to the top after the cell is programmed. The colour coding is 
the same as that shown in Fig. 2, indicating the gradual loss of crystalline order 

(yellow) on formation of a disordered phase (red) in a much larger simulation 
cell. c, Heat dissipation during an extended MD simulation. d, Evolution of 
the amorphous GST (a-GST) structure from the melted state, characterized 
using radial distribution function (RDF) plots for the central area of the model 
(central 20 nm). This figure illustrates how atomic-structure analyses that are 
common for small cells (Extended Data Fig. 1) can now be performed for full 
device-scale simulations.
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NVE). The timestep was 2 fs. Supplementary Note 4 provides details of 
these simulations, as well as of reference AIMD simulations.

Modelling conditions to represent devices
Figure 3a and Extended Data Fig. 3 show three typical operations that 
need to be represented in simulations. Amorphous PCM films can be 
crystallized either by isothermal annealing or by Joule heating (pro-
gramming pulse). In thin-film experiments, amorphous GST alloys 
crystallize into disordered rock-salt-like phases on substrate heating 
at ~150 °C, accompanied by a density increase (due to volume shrink-
age; Extended Data Fig. 3a). Further annealing (250–400 °C) induces 
a gradual structural change via continuous vacancy ordering35,49. Such 
annealing is the initial step for both electronic and photonic PCM 
devices. The subsequent operation is to melt a fraction of the active 
volume near the heater by electrical or laser pulses (Fig. 3a), and the 
subsequent rapid cooling freezes the material to form the amorphous 
phase. In photonic devices that feature a more open structure, the 
active volume expands and shrinks frequently; in electronic devices, 
the PCM is fully encapsulated, and the active volume remains nearly 
unchanged on programming.

Describing these different scenarios leads to different use cases 
for ML-driven MD: namely, simulations in the NVT, NPT and NVE ensem-
bles. Given the statistical distribution of vacancies in rock-salt-like GST 
and the highly disordered nature of liquid and amorphous GST, MD 
simulations of a few hundred atoms are naturally affected by strong 
finite-size effects. In parallel simulations of heating small-scale 
rock-salt-like Ge1Sb2Te4 models (Extended Data Fig. 3c), the SOAP-based 
crystallinity ̄k  (ref. 18) occurs at different onset temperatures for five 
independent runs with different initial atomic configurations (NVT 
ensemble), and large fluctuations in mass density are seen when the 
volume is allowed to change (NPT). In contrast to AIMD, GAP-MD ena-
bles efficient simulations for much larger model sizes, improving 
statistical sampling and therefore the description of systems. In par-
ticular, ̄k  and mass density profiles nearly overlap for 12 × 12 × 12 super-
cells (12,096 atoms each) for multiple independent NVT and NPT runs. 
The same occurs for NVE simulations, yielding more consistent liquid 
dynamics in larger supercells (Extended Data Fig. 3c). These results 
suggest finite-size effects become marginal in larger supercells, in line 
with previous simulations of glassy Ge2Sb2Te5 (ref. 45).

Data availability
Data supporting this work, including the parameter files required 
to use the potential, fitting data and structural models shown 
in Figs. 2–4, are available via Zenodo at https://doi.org/10.5281/
zenodo.8208202. The XML identifier of the iter-2–3 potential model 
is GAP_2022_4_7_480_18_6_12_970.
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Extended Data Fig. 1 | Local structure of disordered GST from ML-driven 
simulations. (a) Radial distribution function (RDF) for four different 
compositions along the GeTe–Sb2Te3 compositional line, from GeTe (cyan) 
to Sb2Te3 (yellow). The Ge4Sb2Te7 composition was not directly included in 
training and is highlighted by red labels. (b) Schematic sketch of octahedral and 
tetrahedral motifs in amorphous GST. (c) Fraction of homopolar bonds (Ge–Ge, 
Sb–Sb, Ge–Sb, and Te–Te) and tetrahedrally coordinated Ge atoms in simulated 
amorphous phases. Results from AIMD (GAP-MD) are shown in black (red), 
respectively. The data points present mean values and the error bars indicate 

standard deviations over 6,000 snapshots of AIMD simulations (collected from 
the last 40 ps trajectories of 3 independent melt–quench runs) and over 20,000 
snapshots of GAP-MD simulations (collected from the last 40 ps trajectories of 10 
independent melt–quench runs), respectively. Lines between points are guides 
to the eye. (d) Schematic sketch of the formation of a Peierls-like distortion, the 
degree of which can be quantified by the normalised angular-limited three-body 
correlation (ALTBC) function. (e) ALTBC functions for four amorphous GST 
phases as obtained from GAP-MD (red) and AIMD (blue), respectively.
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Extended Data Fig. 2 | Medium-range order. This figure provides further 
insight into the medium-range order of GST compounds as described by GAP 
and AIMD models. (a) Distribution of primitive rings. The bar charts present 
the mean values and error bars indicate the standard deviations. (b) Schematic 
drawing of how the degree of planarity can be characterised using the inter-
diagonal distance, d, of four-membered rings51. d values close to 0 indicate 
overly flat rings. (c) Calculated planarity of various amorphous GST structures 

from GAP-MD and AIMD, following ref. 51. The solid lines present mean values 
and the shaded areas indicate standard deviations. The mean values and the 
standard deviations in (a) and (c) were calculated over 6,000 snapshots of AIMD 
simulations (collected from the last 40 ps trajectories of 3 independent melt–
quench runs) and over 20,000 snapshots of GAP-MD simulations (collected from 
the last 40 ps trajectories of 10 independent melt–quench runs), respectively.
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Extended Data Fig. 3 | Device conditions and modelling strategies. Schematic 
sketches of (a) thin-film laboratory samples, and (b) photonic devices. Insets 
indicate different programming conditions in GST. In thin-film experiments, 
amorphous GST alloys crystallize into dis-ordered rock-salt-like phases upon 
substrate heating at approximately 150 °C (iso-thermal heating), accompanied 
by a density increase. In photonic devices, the active volume expands and  
shrinks frequently, and the heating condition is therefore non-iso-thermal. 
Hence, constant-pressure simulations (NPT ensemble) are required for these  

two cases. (c) Evolution of relevant quantities during GAP-MD simulations of 
Ge1Sb2Te4 with different system sizes, expressed as n × n × n expansions of the 
cubic rock-salt-type unit cell. From left to right, we show the per-cell averaged 
crystallinity measure, ̄k, during NVT heating, the mass density during NPT 
heating, and the mean square displacement (MSD) during NVE MD at 1,300 K 
(with initial configurations taken from the NVT runs). For each model size,  
five independent simulations were performed, and the results are plotted as 
semi-transparent lines.
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Extended Data Fig. 4 | Electromigration and segregation in an electric field. 
(a) Simulation combining the GST-GAP-22 ML model and an applied electric 
field. An elongated structural model of Ge1Sb2Te4 (6 × 6 × 16.7 nm3, containing 
18,816 atoms) was isothermally annealed at 1,000 K, that is, in the liquid state 
corresponding to the beginning of the RESET process in devices. An electric field 

of 0.03 eV Å–1 was applied in z-direction, from the bottom to the top of the cell, 
as indicated by an arrow. The atomic charges are taken from ref. 52. One atom of 
each species is highlighted by large spheres to exemplify the atomic segregation 
under applied electric field. (b) Distribution of the respective atomic species 
after 60,000 simulation steps.
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