Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ferroelectric gating of two-dimensional semiconductors for the integration of steep-slope logic and neuromorphic devices

Abstract

The co-integration of logic switches and neuromorphic functions could be used to create new computing architectures with low power consumption and novel functionalities. Two-dimensional (2D) semiconductors and ferroelectric materials could be potentially used to make such devices, but integrating them on the same platform is challenging. Here we show that the 2D semiconductor tungsten diselenide and 2D/2D heterostructures of tungsten diselenide/tin diselenide can be integrated with doped high-k ferroelectric (silicon-doped hafnium oxide) and high-k dielectric gate stacks. With this single platform, four types of logic switch—2D metal–oxide–semiconductor field-effect transistors (FETs), 2D/2D tunnel FETs, negative-capacitance 2D FETs and negative-capacitance 2D/2D tunnel FETs—can be created. The negative-capacitance tungsten diselenide/tin diselenide tunnel FET exhibits an average subthreshold swing of 55 mV dec–1 over four decades of current, and the negative-capacitance tungsten diselenide FET exhibits an average subthreshold swing of 50 mV dec–1 over three decades. The shared ferroelectric gate stacks on 2D devices can also be exploited to create co-integrated artificial synapses for neuromorphic computing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A hybrid ferroelectric and 2D material technology platform.
Fig. 2: Fabrication.
Fig. 3: Room-temperature electrical characteristics of a representative WSe2/SnSe2 TFET and WSe2 FET fabricated on the same flake and platform.
Fig. 4: Electrical characteristics of the NC WSe2/SnSe2 TFET.
Fig. 5: Electrical characteristics of the NC WSe2 FET.
Fig. 6: Synaptic functionality characterization of the hybrid technology platform.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Ionescu, A. M. Energy efficient computing and sensing in the zettabyte era: from silicon to the cloud. In 2017 IEEE International Electron Devices Meeting (IEDM) 1–2 (IEEE, 2017).

  2. Mutlu, O., Ghose, S., Gómez-Luna, J. & Ausavarungnirun, R. Processing data where it makes sense: enabling in-memory computation. Microprocess. Microsyst. 67, 28–41 (2019).

    Article  Google Scholar 

  3. Waldrop, M. M. The chips are down for Moore’s law. Nat. N. 530, 144 (2016).

    Article  Google Scholar 

  4. Liu, C. et al. Small footprint transistor architecture for photoswitching logic and in situ memory. Nat. Nanotechnol. 14, 662–667 (2019).

    Article  Google Scholar 

  5. Zhang, Z. et al. All-in-one two-dimensional retinomorphic hardware device for motion detection and recognition. Nat. Nanotechnol. 17, 27–32 (2022).

    Article  Google Scholar 

  6. Qiu, C. et al. Dirac-source field-effect transistors as energy-efficient, high-performance electronic switches. Science 361, 387–392 (2018).

    Article  Google Scholar 

  7. Zhang, W. et al. Neuro-inspired computing chips. Nat. Electron. 3, 371–382 (2020).

    Article  Google Scholar 

  8. Franklin, A. D. Nanomaterials in transistors: from high-performance to thin-film applications. Science 349, aab2750 (2015).

    Article  Google Scholar 

  9. Ionescu, A. Beyond CMOS: steep-slope devices and energy efficient nanoelectronics. in High Mobility Materials for CMOS Applications 281–305 (Elsevier, 2018).

  10. Convertino, C. et al. A hybrid III–V tunnel FET and MOSFET technology platform integrated on silicon. Nat. Electron. 4, 162–170 (2021).

    Article  Google Scholar 

  11. Han, J.-K. et al. Cointegration of single-transistor neurons and synapses by nanoscale CMOS fabrication for highly scalable neuromorphic hardware. Sci. Adv. 7, eabg8836 (2021).

    Article  Google Scholar 

  12. Orji, N. G. et al. Metrology for the next generation of semiconductor devices. Nat. Electron. 1, 532–547 (2018).

    Article  Google Scholar 

  13. Tong, L. et al. 2D materials–based homogeneous transistor-memory architecture for neuromorphic hardware. Science 373, 1353–1358 (2021).

    Article  Google Scholar 

  14. Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nat. Nanotechnol. 15, 529–544 (2020).

    Article  Google Scholar 

  15. Raitza, M. et al. Exploiting transistor-level reconfiguration to optimize combinational circuits. In Design, Automation & Test in Europe Conference & Exhibition (DATE), 2017 338–343 (IEEE, 2017).

  16. Yan, H. et al. Programmable nanowire circuits for nanoprocessors. Nature 470, 240–244 (2011).

    Article  Google Scholar 

  17. Liu, Y., Huang, Y. & Duan, X. Van der Waals integration before and beyond two-dimensional materials. Nature 567, 323–333 (2019).

    Article  Google Scholar 

  18. Liu, Y. et al. Promises and prospects of two-dimensional transistors. Nature 591, 43–53 (2021).

    Article  Google Scholar 

  19. Wu, P., Reis, D., Hu, X. S. & Appenzeller, J. Two-dimensional transistors with reconfigurable polarities for secure circuits. Nat. Electron. 4, 45–53 (2021).

    Article  Google Scholar 

  20. Sun, X. et al. Reconfigurable logic-in-memory architectures based on a two-dimensional van der Waals heterostructure device. Nat. Electron. 5, 752–760 (2022).

    Article  Google Scholar 

  21. Pan, C. et al. Reconfigurable logic and neuromorphic circuits based on electrically tunable two-dimensional homojunctions. Nat. Electron. 3, 383–390 (2020).

    Article  Google Scholar 

  22. Yan, X. et al. Tunable SnSe2/WSe2 heterostructure tunneling field effect transistor. Small 13, 1701478 (2017).

    Article  Google Scholar 

  23. Oliva, N. et al. WSe2/SnSe2 vdW heterojunction tunnel FET with subthermionic characteristic and MOSFET co-integrated on same WSe2 flake. npj 2D Mater. Appl. 4, 5 (2020).

    Article  Google Scholar 

  24. Kamaei, S. et al. Gate energy efficiency and negative capacitance in ferroelectric 2D/2D TFET from cryogenic to high temperatures. npj 2D Mater. Appl. 5, 76 (2021).

    Article  Google Scholar 

  25. Saripalli, V., Mishra, A., Datta, S. & Narayanan, V. An energy-efficient heterogeneous CMP based on hybrid TFET-CMOS cores. In Proc. 48th Design Automation Conference 729–734 (ACM, 2011).

  26. Fan, S. et al. Tunable negative differential resistance in van der Waals heterostructures at room temperature by tailoring the interface. ACS Nano 13, 8193–8201 (2019).

    Article  Google Scholar 

  27. Salahuddin, S. & Datta, S. Use of negative capacitance to provide voltage amplification for low power nanoscale devices. Nano Lett. 8, 405–410 (2008).

    Article  Google Scholar 

  28. Ionescu, A. M. Negative capacitance gives a positive boost. Nat. Nanotechnol. 13, 7–8 (2018).

    Article  Google Scholar 

  29. Kim, S. et al. Ferroelectric polymer-based artificial synapse for neuromorphic computing. Nanoscale Horiz. 6, 139–147 (2021).

    Article  Google Scholar 

  30. Tian, B. et al. A robust artificial synapse based on organic ferroelectric polymer. Adv. Electron. Mater. 5, 1800600 (2019).

    Article  Google Scholar 

  31. Chen, Y. et al. Graphene–ferroelectric transistors as complementary synapses for supervised learning in spiking neural network. npj 2D Mater. Appl. 3, 31 (2019).

    Article  Google Scholar 

  32. Salahuddin, S. & Datta, S. Can the subthreshold swing in a classical FET be lowered below 60 mV/decade? In 2008 IEEE International Electron Devices Meeting 1–4 (IEEE, 2008).

  33. Mulaosmanovic, H. et al. Novel ferroelectric FET based synapse for neuromorphic systems. In 2017 Symposium on VLSI Technology T176–T177 (IEEE, 2017).

  34. Gupta, N., Makosiej, A., Vladimirescu, A., Amara, A. & Anghel, C. 3T-TFET bitcell based TFET-CMOS hybrid SRAM design for ultra-low power applications. In 2016 Design, Automation & Test in Europe Conference & Exhibition (DATE) 361–366 (IEEE, 2016).

  35. Strangio, S. et al. Digital and analog TFET circuits: sesign and benchmark. Solid-State Electron. 146, 50–65 (2018).

    Article  Google Scholar 

  36. Fulde, M. et al. Fabrication, optimization and application of complementary multiple-gate tunneling FETs. In 2008 2nd IEEE International Nanoelectronics Conference 579–584 (IEEE, 2008).

  37. Resta, G. V. et al. Polarity control in WSe2 double-gate transistors. Sci. Rep. 6, 29448 (2016).

    Article  Google Scholar 

  38. Sarkar, D. et al. A subthermionic tunnel field-effect transistor with an atomically thin channel. Nature 526, 91–95 (2015).

    Article  Google Scholar 

  39. Tomioka, K., Yoshimura, M. & Fukui, T. Steep-slope tunnel field-effect transistors using III–V nanowire/Si heterojunction. In 2012 Symposium on VLSI Technology (VLSIT) 47–48 (IEEE, 2012).

  40. Li, W., Xiao, X. & Xu, H. Versatile electronic devices based on WSe2/SnSe2 vertical van der Waals heterostructures. ACS Appl. Mater. Interfaces 11, 30045–30052 (2019).

    Article  Google Scholar 

  41. Si, M. et al. Steep-slope hysteresis-free negative capacitance MoS2 transistors. Nat. Nanotechnol. 13, 24–28 (2018).

    Article  Google Scholar 

  42. Tosun, M. et al. High-gain inverters based on WSe2 complementary field-effect transistors. ACS Nano 8, 4948–4953 (2014).

    Article  Google Scholar 

  43. Saeidi, A., Jazaeri, F., Stolichnov, I., Enz, C. C. & Ionescu, A. M. Negative capacitance as universal digital and analog performance booster for complementary MOS transistors. Sci. Rep. 9, 9105 (2019).

    Article  Google Scholar 

  44. Rusu, A., Saeidi, A. & Ionescu, A. M. Condition for the negative capacitance effect in metal–ferroelectric–insulator–semiconductor devices. Nanotechnology 27, 115201 (2016).

    Article  Google Scholar 

  45. Zhu, Z. et al. Negative-capacitance characteristics in a steady-state ferroelectric capacitor made of parallel domains. IEEE Electron Device Lett. 38, 1176–1179 (2017).

    Article  Google Scholar 

  46. Lu, H. & Seabaugh, A. Tunnel field-effect transistors: state-of-the-art. IEEE J. Electron Devices Soc. 2, 44–49 (2014).

    Article  Google Scholar 

  47. Saeidi, A. et al. Nanowire tunnel FET with simultaneously reduced subthermionic subthreshold swing and off-current due to negative capacitance and voltage pinning effects. Nano Lett. 20, 3255–3262 (2020).

    Article  Google Scholar 

  48. Bayat, F. M. et al. Implementation of multilayer perceptron network with highly uniform passive memristive crossbar circuits. Nat. Commun. 9, 2331 (2018).

    Article  Google Scholar 

  49. Adam, G. C., Khiat, A. & Prodromakis, T. Challenges hindering memristive neuromorphic hardware from going mainstream. Nat. Commun. 9, 5267 (2018).

    Article  Google Scholar 

  50. Yang, J.-T. et al. Artificial synapses emulated by an electrolyte-gated tungsten-oxide transistor. Adv. Mater. 30, 1801548 (2018).

    Article  Google Scholar 

  51. Yang, C. S. et al. A synaptic transistor based on quasi-2D molybdenum oxide. Adv. Mater. 29, 1700906 (2017).

    Article  Google Scholar 

  52. Gastaldi, C. et al. Intrinsic switching in Si-doped HfO2: a study of Curie–Weiss law and its implications for negative capacitance field-effect transistor. Appl. Phys. Lett. 118, 192904 (2021).

    Article  Google Scholar 

  53. Gokmen, T. & Vlasov, Y. Acceleration of deep neural network training with resistive cross-point devices: design considerations. Front. Neurosci. 10, 333 (2016).

    Article  Google Scholar 

  54. Yu, S. et al. Scaling-up resistive synaptic arrays for neuro-inspired architecture: challenges and prospect. In 2015 IEEE International Electron Devices Meeting (IEDM) 17.3.1–17.3.4 (IEEE, 2015).

  55. Nishitani, Y., Kaneko, Y., Ueda, M., Morie, T. & Fujii, E. Three-terminal ferroelectric synapse device with concurrent learning function for artificial neural networks. J. Appl. Phys. 111, 124108 (2012).

    Article  Google Scholar 

  56. Sanchez Esqueda, I. et al. Aligned carbon nanotube synaptic transistors for large-scale neuromorphic computing. ACS Nano 12, 7352–7361 (2018).

    Article  Google Scholar 

  57. Seo, S. et al. Artificial van der Waals hybrid synapse and its application to acoustic pattern recognition. Nat. Commun. 11, 3936 (2020).

    Article  Google Scholar 

  58. Halter, M. et al. Back-end, CMOS-compatible ferroelectric field-effect transistor for synaptic weights. ACS Appl. Mater. Interfaces 12, 17725–17732 (2020).

    Article  Google Scholar 

  59. Quellmalz, A. et al. Large-area integration of two-dimensional materials and their heterostructures by wafer bonding. Nat. Commun. 12, 917 (2021).

    Article  Google Scholar 

  60. Liu, C. et al. Two-dimensional materials for next-generation computing technologies. Nat. Nanotechnol. 15, 545–557 (2020).

    Article  Google Scholar 

  61. Yang, T. et al. Van der Waals epitaxial growth and optoelectronics of large-scale WSe2/SnS2 vertical bilayer p–n junctions. Nat. Commun. 8, 1906 (2017).

    Article  Google Scholar 

  62. Gandhi, R. et al. CMOS-compatible vertical-silicon-nanowire gate-all-around p-type tunneling FETs with ≤50-mV/decade subthreshold swing. IEEE Electron Device Lett. https://doi.org/10.1109/LED.2011.2165331 (2011).

  63. K. Jeon et al., Si tunnel transistors with a novel silicided source and 46mV/dec swing. In 2010 Symposium on VLSI Technology, Honolulu, HI, USA https://doi.org/10.1109/VLSIT.2010.5556195 (2010).

  64. Leonelli, D. et al. Performance enhancement in multi gate tunneling field effect transistors by scaling the fin-width. Jpn. J. Appl. Phys. https://doi.org/10.1143/JJAP.49.04DC10 (2010).

  65. Knoll, L. et al. Inverters with strained Si nanowire complementary tunnel field-effect transistors. IEEE Electron Device Lett. https://doi.org/10.1109/LED.2013.2258652 (2013).

  66. Villalon, A. et al. Strained tunnel FETs with record ION: first demonstration of ETSOI TFETs with SiGe channel and RSD. In Symposium on VLSI Technology (VLSIT), Honolulu, HI, USA https://doi.org/10.1109/VLSIT.2012.6242455 (2012).

Download references

Acknowledgements

We acknowledge the ERC Advanced Grant Milli-Tech (grant no. 695459) and ERC-2016-ADG, Project ‘MEMS 4.0’, grant agreement no. 742685, for providing financial support for this research. We also thank A. Seabaugh and P. Paletti for sharing the data presented in Fig. 4h and Supplementary Fig. 14.

Author information

Authors and Affiliations

Authors

Contributions

S.K. and A.M.I. conceived the main idea of this experimental study and designed and developed the process flow. S.K., X.L. and J.B. conceived the fabrication process. S.K. performed the electrical measurements and data analysis. C.G. performed the atomic force microscopy and piezoelectric force microscopy measurements. S.K., C.G. and A.S. carried out the MFM characterization and optimization. S.K. and Y.W. performed the pulsed measurements. S.K. and A.S. prepared the figures and schematics. S.K., A.S., J.B. and A.M.I. wrote the manuscript.

Corresponding author

Correspondence to Sadegh Kamaei.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Electronics thanks Zheng-Dong Luo, Shubhadeep Bhattacharjee and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–5, Figs. 1–24 and Tables 1 and 2.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamaei, S., Liu, X., Saeidi, A. et al. Ferroelectric gating of two-dimensional semiconductors for the integration of steep-slope logic and neuromorphic devices. Nat Electron 6, 658–668 (2023). https://doi.org/10.1038/s41928-023-01018-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41928-023-01018-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing