Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A clean ballistic quantum point contact in strontium titanate

Abstract

The perovskite oxide strontium titanate (SrTiO3) combines electrostatic tunability, superconductivity and spin–orbit coupling, and is of potential use in the development of quantum devices. However, exploring quantum effects in SrTiO3 nanostructures is challenging because of the presence of disorder. Here we report high-mobility, gate-tunable devices in SrTiO3 that have ballistic constrictions and clean normal-state conductance quantization. Our devices are based on SrTiO3 two-dimensional electron gas channels that have a thin hafnium oxide barrier layer between the channel and an ionic liquid gate. Conductance plateaus show twofold degeneracy that persists for magnetic fields of at least 5 T. This is above what is expected from the g factors extracted at high fields and could be a signature of electron pairing extending outside the superconducting regime.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Clean and nanopatternable 2DEG in SrTiO3.
Fig. 2: Data for d.c. bias spectroscopy of the QPC.
Fig. 3: Sub-band evolution in a magnetic field.
Fig. 4: Understanding constriction conductance.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available via Zenodo at https://doi.org/10.5281/zenodo.5590921.

References

  1. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    Article  Google Scholar 

  2. Pai, Y.-Y., Tylan-Tyler, A., Irvin, P. & Levy, J. Physics of SrTiO3-based heterostructures and nanostructures: a review. Rep. Prog. Phys. 81, 036503 (2018).

    Article  Google Scholar 

  3. Collignon, C., Lin, X., Rischau, C. W., Fauqué, B. & Behnia, K. Metallicity and superconductivity in doped strontium titanate. Annu. Rev. Condens. Matter Phys. 10, 25–44 (2019).

    Article  Google Scholar 

  4. Gastiasoro, M. N., Ruhman, J. & Fernandes, R. M. Superconductivity in dilute SrTiO3: a review. Ann. Phys. 6, 168107 (2020).

    Article  Google Scholar 

  5. de Leon, N. P. et al. Materials challenges and opportunities for quantum computing hardware. Science 372, 6539 (2021).

  6. Gyenis, A. et al. Moving beyond the transmon: noise-protected superconducting quantum circuits. PRX Quantum 2, 030101 (2021).

    Article  Google Scholar 

  7. Larsen, T. W. et al. Semiconductor-nanowire-based superconducting qubit. Phys. Rev. Lett. 115, 127001 (2015).

    Article  Google Scholar 

  8. De Lange, G. et al. Realization of microwave quantum circuits using hybrid superconducting-semiconducting nanowire Josephson elements. Phys. Rev. Lett. 115, 127002 (2015).

    Article  Google Scholar 

  9. Lutchyn, R. M. et al. Majorana zero modes in superconductor–semiconductor heterostructures. Nat. Rev. Mater. 3, 52–68 (2018).

    Article  Google Scholar 

  10. Prada, E. et al. From Andreev to Majorana bound states in hybrid superconductor–semiconductor nanowires. Nat. Rev. Phys. 2, 575–594 (2020).

    Article  Google Scholar 

  11. Pan, H. & Sarma, S. D. Physical mechanisms for zero-bias conductance peaks in Majorana nanowires. Phys. Rev. Res. 2, 013377 (2020).

    Article  Google Scholar 

  12. Chen, Y. Z. et al. Extreme mobility enhancement of two-dimensional electron gases at oxide interfaces by charge-transfer-induced modulation doping. Nat. Mater. 14, 801–806 (2015).

    Article  Google Scholar 

  13. Trier, F. et al. Quantization of Hall resistance at the metallic interface between an oxide insulator and SrTiO3. Phys. Rev. Lett. 117, 096804 (2016).

    Article  Google Scholar 

  14. Gallagher, P. et al. A high-mobility electronic system at an electrolyte-gated oxide surface. Nat. Commun. 6, 6437 (2015).

    Article  Google Scholar 

  15. Rubi, K. et al. Aperiodic quantum oscillations in the two-dimensional electron gas at the LaAlO3/SrTiO3 interface. npj Quantum Mater. 5, 9 (2020).

    Article  Google Scholar 

  16. Goswami, S., Mulazimoglu, E., Vandersypen, L. M. K. & Caviglia, A. D. Nanoscale electrostatic control of oxide interfaces. Nano Lett. 15, 2627–2632 (2015).

    Article  Google Scholar 

  17. Monteiro, A. M. R. V. L. et al. Side gate tunable Josephson junctions at the LaAlO3/SrTiO3 interface. Nano Lett. 17, 715–720 (2017).

    Article  Google Scholar 

  18. Prawiroatmodjo, G. E. D. K. et al. Evidence of weak superconductivity at the room-temperature grown LaAlO3/SrTiO3 interface. Phys. Rev. B 93, 184504 (2016).

    Article  Google Scholar 

  19. Thierschmann, H. et al. Transport regimes of a split gate superconducting quantum point contact in the two-dimensional LaAlO3/SrTiO3 superfluid. Nat. Commun. 9, 2276 (2018).

    Article  Google Scholar 

  20. Jouan, A. et al. Quantized conductance in a one-dimensional ballistic oxide nanodevice. Nat. Electron. 3, 201–206 (2020).

    Article  Google Scholar 

  21. Bjørlig, A. V. et al. g-factors in LaAlO3/SrTiO3 quantum dots. Phys. Rev. Mater. 4, 122001 (2020).

    Article  Google Scholar 

  22. Ron, A. & Dagan, Y. One-dimensional quantum wire formed at the boundary between two insulating LaAlO3/SrTiO3 interfaces. Phys. Rev. Lett. 112, 136801 (2014).

    Article  Google Scholar 

  23. Maniv, E., Ron, A., Goldstein, M., Palevski, A. & Dagan, Y. Tunneling into a quantum confinement created by a single-step nanolithography of conducting oxide interfaces. Phys. Rev. B 94, 045120 (2016).

    Article  Google Scholar 

  24. Stornaiuolo, D. et al. Signatures of unconventional superconductivity in the LaAlO3/SrTiO3 two-dimensional system. Phys. Rev. B 95, 140502 (2017).

    Article  Google Scholar 

  25. Boselli, M. et al. Electronic transport in submicrometric channels at the LaAlO3/SrTiO3 interface. Phys. Rev. B 103, 075431 (2021).

    Article  Google Scholar 

  26. Mikheev, E., Rosen, I. T. & Goldhaber-Gordon, D. Quantized critical supercurrent in SrTiO3-based quantum point contacts. Sci. Adv. 7, eabi6520 (2021).

    Article  Google Scholar 

  27. Cen, C. et al. Nanoscale control of an interfacial metal–insulator transition at room temperature. Nat. Mater. 7, 298–302 (2008).

    Article  Google Scholar 

  28. Annadi, A. et al. Quantized ballistic transport of electrons and electron pairs in LaAlO3/SrTiO3 nanowires. Nano Lett. 18, 4473–4481 (2018).

    Article  Google Scholar 

  29. Briggeman, M. et al. Pascal conductance series in ballistic one-dimensional LaAlO3/SrTiO3 channels. Science 367, 769–772 (2020).

    Article  Google Scholar 

  30. Cheng, G. et al. Electron pairing without superconductivity. Nature 521, 196–199 (2015).

    Article  Google Scholar 

  31. Damanet, F. et al. Spin-orbit-assisted electron pairing in one-dimensional waveguides. Phys. Rev. B 104, 125103 (2021).

    Article  Google Scholar 

  32. Petach, T. A. et al. Disorder from the bulk ionic liquid in electric double layer transistors. ACS Nano 11, 8395–8400 (2017).

    Article  Google Scholar 

  33. Xie, Y. et al. Quantum longitudinal and Hall transport at the LaAlO3/SrTiO3 interface at low electron densities. Solid State Commun. 197, 25–29 (2014).

    Article  Google Scholar 

  34. Dolev, M., Heiblum, M., Umansky, V., Stern, A. & Mahalu, D. Observation of a quarter of an electron charge at the ν = 5/2 quantum Hall state. Nature 452, 829–834 (2008).

    Article  Google Scholar 

  35. Radu, I. P. et al. Quasi-particle properties from tunneling in the ν = 5/2 fractional quantum Hall state. Science 320, 899–902 (2008).

    Article  Google Scholar 

  36. Rössler, C. et al. Transport properties of clean quantum point contacts. New J. Phys. 13, 113006 (2011).

    Article  Google Scholar 

  37. Shabani, J., McFadden, A., Shojaei, B. & Palmstrøm, C. Gating of high-mobility InAs metamorphic heterostructures. Appl. Phys. Lett. 105, 262105 (2014).

    Article  Google Scholar 

  38. Matsuo, S. et al. Magnetic field inducing Zeeman splitting and anomalous conductance reduction of half-integer quantized plateaus in InAs quantum wires. Phys. Rev. B 96, 201404 (2017).

    Article  Google Scholar 

  39. Mittag, C. et al. Gate-defined quantum point contact in an InAs two-dimensional electron gas. Phys. Rev. B 100, 075422 (2019).

    Article  Google Scholar 

  40. Kjærgaard, M. et al. Quantized conductance doubling and hard gap in a two-dimensional semiconductor–superconductor heterostructure. Nat. Commun. 7, 12841 (2016).

    Article  Google Scholar 

  41. Kjærgaard, M. et al. Transparent semiconductor-superconductor interface and induced gap in an epitaxial heterostructure Josephson junction. Phys. Rev. Appl. 7, 034029 (2017).

    Article  Google Scholar 

  42. Drachmann, A. C. C. et al. Proximity effect transfer from NbTi into a semiconductor heterostructure via epitaxial aluminum. Nano Lett. 17, 1200–1203 (2017).

    Article  Google Scholar 

  43. Fornieri, A. et al. Evidence of topological superconductivity in planar Josephson junctions. Nature 569, 89–92 (2019).

    Article  Google Scholar 

  44. Lee, J. S. et al. Transport studies of Epi-Al/InAs two-dimensional electron gas systems for required building-blocks in topological superconductor networks. Nano Lett. 19, 3083–3090 (2019).

    Article  Google Scholar 

  45. van Wees, B. J. et al. Quantum ballistic and adiabatic electron transport studied with quantum point contacts. Phys. Rev. B 43, 12431 (1991).

    Article  Google Scholar 

  46. Prawiroatmodjo, G. E. D. K. et al. Transport and excitations in a negative-U quantum dot at the LaAlO3/SrTiO3 interface. Nat. Commun. 8, 395 (2017).

    Article  Google Scholar 

  47. Büttiker, M. Quantized transmission of a saddle-point constriction. Phys. Rev. B 41, 7906 (1990).

    Article  Google Scholar 

  48. Scherbakov, A., Bogachek, E. & Landman, U. Quantum electronic transport through three-dimensional microconstrictions with variable shapes. Phys. Rev. B 53, 4054 (1996).

    Article  Google Scholar 

  49. Reyren, N. et al. Anisotropy of the superconducting transport properties of the LaAlO3/SrTiO3 interface. Appl. Phys. Lett. 94, 112506 (2009).

    Article  Google Scholar 

  50. Khalsa, G. & MacDonald, A. H. Theory of the SrTiO3 surface state two-dimensional electron gas. Phys. Rev. B 86, 125121 (2012).

    Article  Google Scholar 

  51. Danneau, R. et al. Zeeman splitting in ballistic hole quantum wires. Phys. Rev. Lett. 97, 026403 (2006).

    Article  Google Scholar 

  52. Briggeman, M. et al. One-dimensional Kronig–Penney superlattices at the LaAlO3/SrTiO3 interface. Nat. Phys. 17, 782–787 (2021).

  53. Božović, I. & Levy, J. Pre-formed Cooper pairs in copper oxides and LaAlO3–SrTiO3 heterostructures. Nat. Phys. 16, 712–717 (2020).

    Article  Google Scholar 

  54. Nichele, F. et al. Characterization of spin-orbit interactions of GaAs heavy holes using a quantum point contact. Phys. Rev. Lett. 113, 046801 (2014).

    Article  Google Scholar 

  55. Kolasiński, K., Mreńca-Kolasińska, A. & Szafran, B. Transconductance and effective Landé factors for quantum point contacts: spin-orbit coupling and interaction effects. Phys. Rev. B 93, 035304 (2016).

    Article  Google Scholar 

  56. Leighton, C. Electrolyte-based ionic control of functional oxides. Nat. Mater. 18, 13–18 (2019).

    Article  Google Scholar 

  57. Liu, C. et al. Two-dimensional superconductivity and anisotropic transport at KTaO3 (111) interfaces. Science 371, 716–721 (2021).

    Article  Google Scholar 

  58. Chen, Z. et al. Electric field control of superconductivity at the LaAlO3/KTaO3 (111) interface. Science 372, 721–724 (2021).

    Article  Google Scholar 

  59. Caviglia, A. et al. Two-dimensional quantum oscillations of the conductance at LaAlO3/SrTiO3 interfaces. Phys. Rev. Lett. 105, 236802 (2010).

    Article  Google Scholar 

  60. Jalan, B., Stemmer, S., Mack, S. & Allen, S. J. Two-dimensional electron gas in δ-doped SrTiO3. Phys. Rev. B 82, 081103 (2010).

    Article  Google Scholar 

  61. Chikina, A. et al. Band-order anomaly at the γ-Al2O3/SrTiO3 interface drives the electron-mobility boost. ACS Nano 15, 4347–4356 (2021).

    Article  Google Scholar 

  62. Shalom, M. B., Sachs, M., Rakhmilevitch, D., Palevski, A. & Dagan, Y. Tuning spin-orbit coupling and superconductivity at the SrTiO3/LaAlO3 interface: a magnetotransport study. Phys. Rev. Lett. 104, 126802 (2010).

    Article  Google Scholar 

  63. Joshua, A., Pecker, S., Ruhman, J., Altman, E. & Ilani, S. A universal critical density underlying the physics of electrons at the LaAlO3/SrTiO3 interface. Nat. Commun. 3, 1129 (2012).

    Article  Google Scholar 

  64. Jouan, A. et al. Multiband Effects in the Superconducting Phase Diagram of Oxide Interfaces. Adv. Mater. Interfaces 9, 2201392 (2022).

    Article  Google Scholar 

  65. Noad, H. et al. Variation in superconducting transition temperature due to tetragonal domains in two-dimensionally doped SrTiO3. Phys. Rev. B 94, 174516 (2016).

    Article  Google Scholar 

  66. Hameed, S. et al. Enhanced superconductivity and ferroelectric quantum criticality in plastically deformed strontium titanate. Nat. Mater. 21, 54–61 (2021).

  67. Bert, J. A. et al. Gate-tuned superfluid density at the superconducting LaAlO3/SrTiO3 interface. Phys. Rev. B 86, 060503 (2012).

    Article  Google Scholar 

  68. Collignon, C. et al. Superfluid density and carrier concentration across a superconducting dome: the case of strontium titanate. Phys. Rev. B 96, 224506 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

This work greatly benefited from discussions with P. Sriram, C. Hsueh, M. Andersen, J. Finney, J. Williams, J. Yue, B. Jalan, J. Ruhman, K. Moler, J. Sau and E. Mansfield. Experimental work (fabrication and measurement) by E.M. was primarily supported the US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division, under contract DE-AC02-76SF00515, and by the Gordon and Betty Moore Foundation through grant GBMF9460. Early experimental development by E.M. was supported by the Air Force Office of Scientific Research through grant no. FA9550-16-1-0126. E.M. was also supported by the Nano- and Quantum Science and Engineering Postdoctoral Fellowship at Stanford University and by internal Stanford University funds. Measurement contribution by I.T.R. was supported by the US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division, under contract DE-AC02-76SF00515, and by the ARCS foundation. Engagement by M.A.K and D.G.-G. was supported by the US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division, under contract DE-AC02-76SF00515. Measurement infrastructure was funded in part by the Gordon and Betty Moore Foundation’s EPiQS Initiative through grant GBMF3429 and grant GBMF9460. Part of this work was performed at the Stanford Nano Shared Facilities (SNSF)/Stanford Nanofabrication Facility (SNF), supported by the National Science Foundation under award ECCS-1542152. Work at the University of Strathclyde was supported by the EPSRC Programme Grant DesOEQ (EP/P009565/1).

Author information

Authors and Affiliations

Authors

Contributions

E.M. and D.G.-G. designed the experiment. E.M. fabricated the devices. E.M. and I.T.R. performed the measurements. E.M. carried out the data analysis. J.K. and F.D. performed the theoretical simulations. All authors discussed the results and wrote the manuscript.

Corresponding authors

Correspondence to Evgeny Mikheev or David Goldhaber-Gordon.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Electronics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Quantum oscillations in the 2DEG.

(a) Temperature dependence of Shubnikov-de Haas oscillations in the 2DEG sheet resistance RXX. Same data are shown as background-subtracted resistance (δRXX) and its second derivative with B (d2RXX/dB2). Markers indicate indexed maxima and minima. (b) Landau level index RLL plotted against peak positions in 1/B. (c) Spacing between individual oscillations, converted to local frequency and implied carrier density. Solid line in (b, c) is a constant-frequency fit for B > 7 T. Dotted line in (c) is half of fitted value. (d) Temperature dependence of oscillation amplitude at B = 7.9 and 8.9 T, dashed lines are fits to Lifshitz-Kosevich model with m* = 3.

Extended Data Fig. 2 Absence of long range superconducting order.

Connected symbols show superconducting Tc for the same device with Hall density (NH) tuned by ionic liquid (IL) gate voltage. Lateral shading for SrTiO3/HfOx+IL data represents the NH region explored by VGIL modulation with frozen ionic liquid. SrTiO3+IL data are from26, SrTiO3/hBN+IL data are from14, the blue dashed line is the typical location of the superconducting dome in SrTiO3/LaAlO3, drawn consistent with62,63. The solid black line is a guide to the eye for NH = 0.

Extended Data Fig. 3 Subband packets and Pascal sequence.

Parametric plot of transconductance against conductance at B = 0. Markers are a line cut from data shown in Fig. 3c at zero field. The dips in transconductance follow the Pascal sequence G/(2e2/h) = 0, 1, 3, 6, 10, 15, 21, … (blue vertical lines). Shaded regions indicate the extent of subband packets with same ny + nz that are quasi-degenerate, within broadening. Black line is the model of transconductance generated by Eq. (2) with broadening by ωx = 0.11 meV, see supplementary sections S2B,C for details.

Supplementary information

Supplementary Information

Supplementary Sections 1–4, Figs. 1–35 and references.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikheev, E., Rosen, I.T., Kombe, J. et al. A clean ballistic quantum point contact in strontium titanate. Nat Electron 6, 417–424 (2023). https://doi.org/10.1038/s41928-023-00981-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41928-023-00981-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing