Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Wafer-scale transistor arrays fabricated using slot-die printing of molybdenum disulfide and sodium-embedded alumina

Abstract

Two-dimensional materials made via solution processing could be used to create next-generation electronic devices at scale. However, existing solution processing methods typically have a trade-off between scalability and material quality, which makes them unsuitable for practical applications. Here we show that wafer-scale arrays of molybdenum-disulfide-based transistors can be fabricated using a commercial slot-die printing process. We create inks of molybdenum disulfide nanosheets and sodium-embedded alumina for printing of the semiconductor and gate dielectric layer, respectively. The transistors exhibit average charge carrier mobilities of 80.0 cm2 V−1 s−1 in field-effect transistor measurements and 132.9 cm2 V−1 s−1 in Hall measurements at room temperature. The high charge carrier mobility is attributed to the sodium-embedded alumina gate dielectric, which causes a band-like charge carrier transport in the molybdenum-disulfide-nanosheet-based thin-film networks. We use the transistors to create various logic gates, including NOT, NOR, NAND and static random-access memory.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Device fabrication based on slot-die coating.
Fig. 2: Device optimization and origin of high carrier mobility.
Fig. 3: Applicability to large-area logic circuits.

Similar content being viewed by others

Data availability

Source data are provided with this paper. The other data that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. McDonald, S. A. et al. Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nat. Mater. 4, 138–142 (2005).

    Article  Google Scholar 

  2. de Arquer, F. P. G., Armin, A., Meredith, P. & Sargent, E. H. Solution-processed semiconductors for next-generation photodetectors. Nat. Rev. Mater. 2, 16100 (2017).

    Article  Google Scholar 

  3. Han, S. J. et al. High-speed logic integrated circuits with solution-processed self-assembled carbon nanotubes. Nat. Nanotechnol. 12, 861–865 (2017).

    Article  Google Scholar 

  4. Kelly, A. G. et al. All-printed thin-film transistors from networks of liquid-exfoliated nanosheets. Science 356, 69–72 (2017).

    Article  Google Scholar 

  5. Hu, G. H. et al. Functional inks and printing of two-dimensional materials. Chem. Soc. Rev. 47, 3265–3300 (2018).

    Article  Google Scholar 

  6. Lin, Z. Y. et al. Solution-processable 2D semiconductors for high-performance large-area electronics. Nature 562, 254–258 (2018).

    Article  Google Scholar 

  7. Kagan, C. R., Lifshitz, E., Sargent, E. H. & Talapin, D. V. Building devices from colloidal quantum dots. Science 353, aac5523 (2016).

    Article  Google Scholar 

  8. Geier, M. L. et al. Solution-processed carbon nanotube thin-film complementary static random access memory. Nat. Nanotechnol. 10, 944–948 (2015).

    Article  Google Scholar 

  9. Kang, J., Sangwan, V. K., Wood, J. D. & Hersam, M. C. Solution-based processing of monodisperse two-dimensional nanomaterials. Acc. Chem. Res. 50, 943–951 (2017).

    Article  Google Scholar 

  10. Coleman, J. N. et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331, 568–571 (2011).

    Article  Google Scholar 

  11. Kim, J. et al. All-solution-processed van der Waals heterostructures for wafer-scale electronics. Adv. Mater. 34, 2106110 (2022).

    Article  Google Scholar 

  12. Zhu, J. & Hersam, M. C. Assembly and electronic applications of colloidal nanomaterials. Adv. Mater. 29, 1603895 (2017).

    Article  Google Scholar 

  13. Piatti, E. et al. Charge transport mechanisms in inkjet-printed thin-film transistors based on two-dimensional materials. Nat. Electron. 4, 893–905 (2021).

    Article  Google Scholar 

  14. Lin, Z. Y., Huang, Y. & Duan, X. F. Van der Waals thin-film electronics. Nat. Electron. 2, 378–388 (2019).

    Article  Google Scholar 

  15. Zhang, X., Lai, Z. C., Tan, C. L. & Zhang, H. Solution-processed two-dimensional MoS2 nanosheets: preparation, hybridization, and applications. Angew. Chem. Int. Ed. 55, 8816–8838 (2016).

    Article  Google Scholar 

  16. Kim, J. et al. Solution-processed MoS2 film with functional interfaces via precursor-assisted chemical welding. ACS Appl. Mater. Interfaces 13, 12221–12229 (2021).

    Article  Google Scholar 

  17. Fivaz, R. & Mooser, E. Mobility of charge carriers in semiconducting layer structures. Phys. Rev. 163, 743 (1967).

    Article  Google Scholar 

  18. McDonnell, S. et al. HfO2 on MoS2 by atomic layer deposition: adsorption mechanisms and thickness scalability. ACS Nano 7, 10354–10361 (2013).

    Article  Google Scholar 

  19. Fallahazad, B. et al. Scaling of Al2O3 dielectric for graphene field-effect transistors. Appl. Phys. Lett. 100, 093112 (2012).

    Article  Google Scholar 

  20. Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011).

    Article  Google Scholar 

  21. Johnson, R. W., Hultqvist, A. & Bent, S. F. A brief review of atomic layer deposition: from fundamentals to applications. Mater. Today 17, 236–246 (2014).

    Article  Google Scholar 

  22. Cho, J. H. et al. Printable ion-gel gate dielectrics for low-voltage polymer thin-film transistors on plastic. Nat. Mater. 7, 900–906 (2008).

    Article  Google Scholar 

  23. Kim, B. J. et al. Water-gel for gating graphene transistors. Nano Lett. 14, 2610–2616 (2014).

    Article  Google Scholar 

  24. Herlogsson, L. et al. Low-voltage polymer field-effect transistors gated via a proton conductor. Adv. Mater. 19, 97–101 (2007).

    Article  Google Scholar 

  25. Larsson, O., Said, E., Berggren, M. & Crispin, X. Insulator polarization mechanisms in polyelectrolyte-gated organic field-rffect transistors. Adv. Funct. Mater. 19, 3334–3341 (2009).

    Article  Google Scholar 

  26. Liu, Y., Guan, P. F., Zhang, B., Falk, M. L. & Katz, H. E. Ion dependence of gate dielectric behavior of alkali metal ion-incorporated aluminas in oxide field-effect transistors. Chem. Mater. 25, 3788–3796 (2013).

    Article  Google Scholar 

  27. Zhang, B., Liu, Y., Agarwala, S., Yeh, M. & Katz, H. E. Structure, sodium ion role, and practical issues for β-alumina as a high-k solution-processed gate layer for transparent and low-voltage electronics. ACS Appl. Mater. Interfaces 6, 6991 (2014).

    Article  Google Scholar 

  28. Pal, B. N., Dhar, B. M., See, K. C. & Katz, H. E. Solution-deposited sodium beta-alumina gate dielectrics for low-voltage and transparent field-effect transistors. Nat. Mater. 8, 898–903 (2009).

    Article  Google Scholar 

  29. Amani, M. et al. Near-unity photoluminescence quantum yield in MoS2. Science 350, 1065–1068 (2015).

    Article  Google Scholar 

  30. Lin, P., Zhu, L. P., Li, D. & Wang, Z. L. Defect repair for enhanced piezo-phototronic MoS2 flexible phototransistors. J. Mater. Chem. C 7, 14731–14738 (2019).

    Article  Google Scholar 

  31. Ippolito, S. et al. Covalently interconnected transition metal dichalcogenide networks via defect engineering for high-performance electronic devices. Nat. Nanotechnol. 16, 592–598 (2021).

    Article  Google Scholar 

  32. Sakanoue, T. & Sirringhaus, H. Band-like temperature dependence of mobility in a solution-processed organic semiconductor. Nat. Mater. 9, 736–740 (2010).

    Article  Google Scholar 

  33. Wang, S. et al. Band-like transport in surface-functionalized highly solution-processable graphene nanosheets. Adv. Mater. 20, 3440–3446 (2008).

    Article  Google Scholar 

  34. Jariwala, D. et al. Band-like transport in high mobility unencapsulated single-layer MoS2 transistors. Appl. Phys. Lett. 102, 173107 (2013).

    Article  Google Scholar 

  35. Qiu, H. et al. Hopping transport through defect-induced localized states in molybdenum disulphide. Nat. Commun. 4, 2642 (2013).

    Article  Google Scholar 

  36. Xue, J. H., Huang, S. Y., Wang, J. Y. & Xu, H. Q. Mott variable-range hopping transport in a MoS2 nanoflake. RSC Adv. 9, 17885–17890 (2019).

    Article  Google Scholar 

  37. Liu, K. L. et al. A wafer-scale van der Waals dielectric made from an inorganic molecular crystal film. Nat. Electron. 4, 906–913 (2021).

    Article  Google Scholar 

  38. Jena, D. & Konar, A. Enhancement of carrier mobility in semiconductor nanostructures by dielectric engineering. Phys. Rev. Lett. 98, 136805 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Basic Science Program (NRF-2020R1A2C2007819) through the National Research Foundation (NRF) of Korea funded by the Ministry of Science and ICT, Korea (J.H.C); the Creative Materials Discovery Program through the NRF funded by the Ministry of Science and ICT (NRF-2019M3D1A1078299) (J.H.C.); the Yonsei Signature Research Cluster Program of 2021 (J.H.C.); the NRF grant funded by the Korean Government (MSIT) (RS-2023-00208538) (J. Kang); and the Korea Basic Science Institute (KBSI) National Research Facilities and Equipment Center (NFEC) grant funded by the Korean Government (Ministry of Education) (2019R1A6C1010031) (J. Kang). This research was partially supported by BrainLink program funded by the Ministry of Science and ICT through the NRF of Korea (RS-2023-00237308) (J.H.C. and J. Kang).

Author information

Authors and Affiliations

Authors

Contributions

J.H.C. and J. Kang initiated and supervised all the research. Y.A.K. and Jihyun Kim carried out and designed most of the experimental work and data analysis. M.S.K., D.G.R., D.R. and D.W.K. assisted in the materials processing. S.B.J., Y.S., B.K., D.K. and Jeongmin Kim assisted in the electrical measurements and analysis. All authors discussed the results and contributed to the writing of the manuscript.

Corresponding authors

Correspondence to Joohoon Kang or Jeong Ho Cho.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Electronics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–29 and Table 1.

Supplementary Video 1

Video showing the slot-die coating process.

Source data

Source Data Fig. 1

Source data for Fig. 1.

Source Data Fig. 2

Source data for Fig. 2.

Source Data Fig. 3

Source data for Fig. 3.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwon, Y.A., Kim, J., Jo, S.B. et al. Wafer-scale transistor arrays fabricated using slot-die printing of molybdenum disulfide and sodium-embedded alumina. Nat Electron 6, 443–450 (2023). https://doi.org/10.1038/s41928-023-00971-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41928-023-00971-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing