Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Blue light-emitting diodes based on quasi-two-dimensional perovskite with efficient charge injection and optimized phase distribution via an alkali metal salt

Abstract

Perovskite light-emitting diodes are of potential use in the development of colour displays and solid-state lighting. This requires high-performance blue perovskite emission. However, quasi-two-dimensional blue perovskite light-emitting diodes exhibit lower performance than green- and red-emitting devices due to poor charge injection between the hole injection layers and perovskite film, high amounts of non-radiative recombination and random phase distribution. Here we show that the addition of an alkali metal salt (caesium chloride) to a hole injection layer (poly(3,4-ethylenedioxythiophene) polystyrene sulfonate) can improve carrier transport in the injection layer and create better band alignment for increased charge injection efficiency. The growth of perovskite layers on the caesium-chloride-incorporated substrates also causes a rearrangement of their phase distribution, which leads to lower non-radiative recombinations and enhanced charge transport. With this approach, we create sky-blue quasi-two-dimensional perovskite light-emitting diodes with an emission peak located at 486 nm, a peak external quantum efficiency of 16.07% and encouraging operational stability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Effect of CsCl on properties of PEDOT:PSS films.
Fig. 2: Characteristics of perovskite films deposited on PEDOT:PSS substrates without and with CsCl.
Fig. 3: Effects of CsCl on the phase distribution of quasi-2D perovskites.
Fig. 4: Charge-carrier transfer process in quasi-2D perovskites.
Fig. 5: Performance of PeLEDs.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon request.

References

  1. Liu, X.-K. et al. Metal halide perovskites for light-emitting diodes. Nat. Mater. 20, 10–21 (2021).

    Article  Google Scholar 

  2. Kovalenko, M. V., Protesescu, L. & Bodnarchuk, M. I. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals. Science 358, 745–750 (2017).

    Article  Google Scholar 

  3. Akkerman, Q. A., Rainò, G., Kovalenko, M. V. & Manna, L. Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals. Nat. Mater. 17, 394–405 (2018).

    Article  Google Scholar 

  4. Cho, H. et al. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science 350, 1222–1225 (2015).

    Article  Google Scholar 

  5. Tan, Z. K. et al. Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol. 9, 687–692 (2014).

    Article  Google Scholar 

  6. Kim, Y. H. et al. Comprehensive defect suppression in perovskite nanocrystals for high-efficiency light-emitting diodes. Nat. Photon. 15, 148–155 (2021).

    Article  Google Scholar 

  7. Lin, K. et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature 562, 245–248 (2018).

    Article  Google Scholar 

  8. Cao, Y. et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature 562, 249–253 (2018).

    Article  Google Scholar 

  9. Chiba, T. et al. Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices. Nat. Photon. 12, 681–687 (2018).

    Article  Google Scholar 

  10. Chu, Z. et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 22% via small-molecule passivation. Adv. Mater. 33, 2007169 (2021).

    Article  Google Scholar 

  11. Liu, Z. et al. Perovskite light-emitting diodes with EQE exceeding 28% through a synergetic dual‐additive strategy for defect passivation and nanostructure regulation. Adv. Mater. 33, 2103268 (2021).

    Article  Google Scholar 

  12. Ma, D. et al. Distribution control enables efficient reduced-dimensional perovskite LEDs. Nature 599, 594–598 (2021).

    Article  Google Scholar 

  13. Li, Z. et al. Modulation of recombination zone position for quasi-two-dimensional blue perovskite light-emitting diodes with efficiency exceeding 5%. Nat. Commun. 10, 1027 (2019).

    Article  Google Scholar 

  14. Vashishtha, P., Ng, M., Shivarudraiah, S. B. & Halpert, J. E. High efficiency blue and green light-emitting diodes using Ruddlesden–Popper inorganic mixed halide perovskites with butylammonium interlayers. Chem. Mater. 31, 83–89 (2018).

    Article  Google Scholar 

  15. Yao, E. P. et al. High-brightness blue and white LEDs based on inorganic perovskite nanocrystals and their composites. Adv. Mater. 29, 1606859 (2017).

    Article  Google Scholar 

  16. Gangishetty, M. K., Hou, S., Quan, Q. & Congreve, D. N. Reducing architecture limitations for efficient blue perovskite light-emitting diodes. Adv. Mater. 30, 1706226 (2018).

    Article  Google Scholar 

  17. Xing, J. et al. Color-stable highly luminescent sky-blue perovskite light-emitting diodes. Nat. Commun. 9, 3541 (2018).

    Article  Google Scholar 

  18. Liu, Y. et al. Efficient blue light-emitting diodes based on quantum-confined bromide perovskite nanostructures. Nat. Photon. 13, 760–764 (2019).

    Article  Google Scholar 

  19. Wang, Q. et al. Efficient sky-blue perovskite light-emitting diodes via photoluminescence enhancement. Nat. Commun. 10, 5633 (2019).

    Article  Google Scholar 

  20. Kumar, S. et al. Efficient blue electroluminescence using quantum-confined two-dimensional perovskites. ACS Nano 10, 9720–9729 (2016).

    Article  Google Scholar 

  21. Kumawat, N. K., Liu, X. K., Kabra, D. & Gao, F. Blue perovskite light-emitting diodes: progress, challenges and future directions. Nanoscale 11, 2109–2120 (2019).

    Article  Google Scholar 

  22. Li, C. H. A., Zhou, Z. C., Vashishtha, P. & Halpert, J. E. The future is blue (LEDs): why chemistry is the key to perovskite displays. Chem. Mater. 31, 6003–6032 (2019).

    Article  Google Scholar 

  23. Song, J. et al. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Adv. Mater. 27, 7162 (2015).

    Article  Google Scholar 

  24. Yusoff, A. R. B. M. et al. High-efficiency, solution-processable, multilayer triple cation perovskite light-emitting diodes with copper sulfide–gallium–tin oxide hole transport layer and aluminum-zinc oxide–doped cesium electron injection layer. Mater. Today Chem. 10, 104–111 (2018).

    Article  Google Scholar 

  25. Ren, Z. W. et al. Hole transport bilayer structure for quasi-2D perovskite based blue light-emitting diodes with high brightness and good spectral stability. Adv. Funct. Mater. 29, 1905339 (2019).

    Article  Google Scholar 

  26. Shen, Y. et al. Interfacial potassium‐guided grain growth for efficient deep‐blue perovskite light‐emitting diodes. Adv. Funct. Mater. 31, 2006736 (2021).

    Article  Google Scholar 

  27. Parobek, D. et al. Exciton-to-dopant energy transfer in Mn-doped cesium lead halide perovskite nanocrystals. Nano Lett. 16, 7376–7380 (2016).

    Article  Google Scholar 

  28. Chou, K. F. & Dennis, A. M. Förster resonance energy transfer between quantum dot donors and quantum dot acceptors. Sensors 15, 13288–13325 (2015).

    Article  Google Scholar 

  29. Zhang, L. et al. Ultra-bright and highly efficient inorganic based perovskite light-emitting diodes. Nat. Commun. 8, 15640 (2017).

    Article  Google Scholar 

  30. Chen, P. et al. Charge-transfer versus energy-transfer in quasi-2D perovskite light-emitting diodes. Nano Energy 50, 615–622 (2018).

    Article  Google Scholar 

  31. Jiang, Y. et al. Spectra stable blue perovskite light-emitting diodes. Nat. Commun. 10, 1868 (2019).

    Article  Google Scholar 

  32. Li, G. et al. Highly efficient perovskite nanocrystal light-emitting diodes enabled by a universal crosslinking method. Adv. Mater. 28, 3528 (2016).

    Article  Google Scholar 

  33. Chu, Z. et al. Large cation ethylammonium incorporated perovskite for efficient and spectra stable blue light-emitting diodes. Nat. Commun. 11, 4165 (2020).

    Article  Google Scholar 

  34. Yuan, S. et al. Efficient and spectrally stable blue perovskite light‐emitting diodes employing a cationic π‐conjugated polymer. Adv. Mater. 33, 2103640 (2021).

    Article  Google Scholar 

  35. Pang, P. et al. Rearranging low-dimensional phase distribution of quasi-2D perovskites for efficient sky-blue perovskite light-emitting diodes. ACS Nano 14, 11420–11430 (2020).

    Article  Google Scholar 

  36. Yuan, S. et al. Optimization of low‐dimensional components of quasi‐2D perovskite films for deep‐blue light‐emitting diodes. Adv. Mater. 31, 1904319 (2019).

    Article  Google Scholar 

  37. Thomas, J. P., Zhao, L., McGillivray, D. & Leung, K. T. High-efficiency hybrid solar cells by nanostructural modification in PEDOT:PSS with co-solvent addition. J. Mater. Chem. A 2, 2383–2389 (2014).

    Article  Google Scholar 

  38. Liu, X. et al. Multifunctional RbCl dopants for efficient inverted planar perovskite solar cell with ultra-high fill factor, negligible hysteresis and improved stability. Nano Energy 53, 567–578 (2018).

    Article  MathSciNet  Google Scholar 

  39. Horii, T., Li, Y., Mori, Y. & Okuzaki, H. Correlation between the hierarchical structure and electrical conductivity of PEDOT/PSS. Polym. J. 47, 695–699 (2015).

    Article  Google Scholar 

  40. Ouyang, J. et al. On the mechanism of conductivity enhancement in poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) film through solvent treatment. Polymer 45, 8443–8450 (2004).

    Article  Google Scholar 

  41. Lin, Y.-J. et al. Increasing the work function of poly(3,4-ethylenedioxythiophene) doped with poly(4-styrenesulfonate) by ultraviolet irradiation. Appl. Phys. Lett. 91, 092127 (2007).

    Article  Google Scholar 

  42. Jiang, K. et al. Inverted planar perovskite solar cells based on CsI-doped PEDOT:PSS with efficiency beyond 20% and small energy loss. J. Mater. Chem. A 7, 21662–21667 (2019).

    Article  Google Scholar 

  43. Mahmud, M. A. et al. Combined bulk and surface passivation in dimensionally engineered 2D‐3D perovskite films via chlorine diffusion. Adv. Funct. Mater. 31, 2104251 (2021).

    Article  Google Scholar 

  44. Duijnstee, E. A. et al. Toward understanding space-charge limited current measurements on metal halide perovskites. ACS Energy Lett. 5, 376–384 (2020).

    Article  Google Scholar 

  45. Le Corre, V. M. et al. Revealing charge carrier mobility and defect densities in metal halide perovskites via space-charge-limited current measurements. ACS Energy Lett. 6, 1087–1094 (2021).

    Article  Google Scholar 

  46. Liu, J., Leng, J., Wu, K., Zhang, J. & Jin, S. Observation of internal photoinduced electron and hole separation in hybrid two-dimentional perovskite films. J. Am. Chem. Soc. 139, 1432–1435 (2017).

    Article  Google Scholar 

  47. Ren, Z. et al. High‐performance blue perovskite light‐emitting diodes enabled by efficient energy transfer between coupled quasi‐2D perovskite layers. Adv. Mater. 33, 2005570 (2021).

    Article  Google Scholar 

  48. Ren, Z. et al. Strategies toward efficient blue perovskite light‐emitting diodes. Adv. Funct. Mater. 31, 2100516 (2021).

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (grant nos. 61925405 and 61634001), Beijing Natural Science Foundation (Z220007), Strategic Priority Research Program of the Chinese Academy of Sciences (XDB43000000) and Collaborative Innovation Center of Suzhou Nano Science and Technology.

Author information

Authors and Affiliations

Authors

Contributions

Z.C. and J.Y. conceived the idea and designed the experiments. J.Y. directed and supervised the project. Z.C. carried out the device fabrication and characterizations. W.Z., J.J., Z.Q., F.M., Y.Z., X.C., Y.S., Y.L., Z.Y. and X.Z. were involved in the data analysis. Z.C. and J.Y. co-wrote the paper. All the authors contributed to discussions and finalizing the paper.

Corresponding author

Correspondence to Jingbi You.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Electronics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–20 and Tables 1 and 2.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, Z., Zhang, W., Jiang, J. et al. Blue light-emitting diodes based on quasi-two-dimensional perovskite with efficient charge injection and optimized phase distribution via an alkali metal salt. Nat Electron 6, 360–369 (2023). https://doi.org/10.1038/s41928-023-00955-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41928-023-00955-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing