Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Low-pass filters based on van der Waals ferromagnets

Abstract

Two-dimensional (2D) magnets offer valuable electrical and mechanical properties, and could be used to create 2D nanoelectromechanical systems. However, the low Curie temperature of most 2D magnets limits practical applications. Here we report van der Waals ferromagnetic low-pass filters based on wafer-scale iron germanium telluride (Fe5+xGeTe2) thin films grown by molecular-beam epitaxy. We show that the Curie temperature of the Fe5+xGeTe2 system can be continuously modulated from 260 to 380 K via in situ iron doping. Few-layer Fe5+xGeTe2 is used to fabricate planar spiral inductors, with the 2D magnetic core providing inductance enhancement of 74% at room temperature compared with an inductor without the core. Low-pass Butterworth filters are then created from inductance–capacitance circuits built with these inductors. The filters offer a broad dynamic range of around 40 dB, and the –3 dB cut-off frequency can be tuned from 18 to 30 Hz by using different inductors in the inductance–capacitance circuit.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Tunable ferromagnetism in high-TC Fe5+xGeTe2 thin films.
Fig. 2: Intrinsic magnetic properties of Fe5.16GeTe2 film with TC of ~380 K.
Fig. 3: 2D ferromagnetic mutual inductors based on Fe7.05GeTe2 core.
Fig. 4: vdW ferromagnetic low-pass filters based on Fe7.05GeTe2.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of the study are available from the corresponding author upon reasonable request.

References

  1. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    Article  Google Scholar 

  2. Zhang, Y., Tan, Y.-W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201–204 (2005).

    Article  Google Scholar 

  3. Bhimanapati, G. R. et al. Recent advances in two-dimensional materials beyond graphene. ACS Nano 9, 11509–11539 (2015).

    Article  Google Scholar 

  4. Lee, J. et al. Electrically tunable single- and few-layer MoS2 nanoelectromechanical systems with broad dynamic range. Sci. Adv. 4, eaao6653 (2018).

    Article  Google Scholar 

  5. Liu, B. et al. High-performance chemical sensing using Schottky-contacted chemical vapor deposition grown monolayer MoS2 transistors. ACS Nano 8, 5304–5314 (2014).

    Article  Google Scholar 

  6. Sarkar, D. et al. Functionalization of transition metal dichalcogenides with metallic nanoparticles: implications for doping and gas-sensing. Nano Lett. 15, 2852–2862 (2015).

    Article  Google Scholar 

  7. Hwang, M. T. et al. Ultrasensitive detection of nucleic acids using deformed graphene channel field effect biosensors. Nat. Commun. 11, 1543 (2020).

    Article  Google Scholar 

  8. Sarkar, D. et al. MoS2 field-effect transistor for next-generation label-free biosensors. ACS Nano 8, 3992–4003 (2014).

    Article  Google Scholar 

  9. Zhou, G. et al. Ultrasensitive mercury ion detection using DNA-functionalized molybdenum disulfide nanosheet/gold nanoparticle hybrid field-effect transistor device. ACS Sens. 1, 295–302 (2016).

    Article  Google Scholar 

  10. Zhang, Y. et al. Emergence of Kondo lattice behavior in a van der Waals itinerant ferromagnet, Fe3GeTe2. Sci. Adv. 4, eaao6791 (2018).

    Article  Google Scholar 

  11. Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546, 270–273 (2017).

    Article  Google Scholar 

  12. Jiang, S., Xie, H., Shan, J. & Mak, K. F. Exchange magnetostriction in two-dimensional antiferromagnets. Nat. Mater. 19, 1295–1299 (2020).

    Article  Google Scholar 

  13. Greenhouse, H. Design of planar rectangular microelectronic inductors. IEEE Trans. Parts Hybrids Packag. 10, 101–109 (1974).

  14. Khalid, N. et al. Very high Q, NEMS inductor for 12 GHz wireless sensor applications. In 2010 Fifth IEEE International Symposium on Electronic Design, Test & Applications 319–324 (IEEE, 2010).

  15. Zheng, Y. et al. Integrated flexible parylene-based inductor with magnetic core for wireless power transmission system. Int. J. Nanotechnol. 11, 704–712 (2014).

    Article  Google Scholar 

  16. Lin, H. et al. Integrated magnetoelectric devices: filters, pico-Tesla magnetometers, and ultracompact acoustic antennas. MRS Bull. 43, 841–847 (2018).

    Article  Google Scholar 

  17. Weinstein, D. et al. Mechanical coupling of 2D resonator arrays for MEMS filter applications. In 2007 IEEE International Frequency Control Symposium Joint with the 21st European Frequency and Time Forum 1362–1365 (IEEE, 2007).

  18. Rodriguez-Villegas, E., Casson, A. J. & Corbishley, P. A subhertz nanopower low-pass filter. IEEE Trans. Circuits Syst., II, Exp. Briefs 58, 351–355 (2011).

    Google Scholar 

  19. Bonilla, M. et al. Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates. Nat. Nanotechnol. 13, 289–293 (2018).

    Article  Google Scholar 

  20. O’Hara, D. J. et al. Room temperature intrinsic ferromagnetism in epitaxial manganese selenide films in the monolayer limit. Nano Lett. 18, 3125–3131 (2018).

    Article  Google Scholar 

  21. Sun, X. et al. Room temperature ferromagnetism in ultra-thin van der Waals crystals of 1T-CrTe2. Nano Res. 13, 3358–3363 (2020).

    Article  Google Scholar 

  22. Liu, S. et al. Two-dimensional ferromagnetic superlattices. Natl Sci. Rev. 7, 745–754 (2020).

    Article  Google Scholar 

  23. Gibertini, M., Koperski, M., Morpurgo, A. F. & Novoselov, K. S. Magnetic 2D materials and heterostructures. Nat. Nanotechnol. 14, 408–419 (2019).

    Article  Google Scholar 

  24. Deng, Y. et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature 563, 94–99 (2018).

    Article  Google Scholar 

  25. Fu, S. et al. Enabling room temperature ferromagnetism in monolayer MoS2 via in situ iron-doping. Nat. Commun. 11, 2034 (2020).

    Article  Google Scholar 

  26. Yun, S. J. et al. Ferromagnetic order at room temperature in monolayer WSe2 semiconductor via vanadium dopant. Adv. Sci. 7, 1903076 (2020).

    Article  Google Scholar 

  27. Pham, Y. T. H. et al. Tunable ferromagnetism and thermally induced spin flip in vanadium‐doped tungsten diselenide monolayers at room temperature. Adv. Mater. 32, 2003607 (2020).

    Article  Google Scholar 

  28. Ortiz Jimenez, V. et al. Light‐controlled room temperature ferromagnetism in vanadium‐doped tungsten disulfide semiconducting monolayers. Adv. Electron. Mater. 7, 2100030 (2021).

    Article  Google Scholar 

  29. Zhang, F. et al. Monolayer vanadium‐doped tungsten disulfide: a room‐temperature dilute magnetic semiconductor. Adv. Sci. 7, 2001174 (2020).

    Article  Google Scholar 

  30. May, A. F., Bridges, C. A. & McGuire, M. A. Physical properties and thermal stability of Fe5−xGeTe2 single crystals. Phys. Rev. Mater. 3, 104401 (2019).

    Article  Google Scholar 

  31. May, A. F. et al. Ferromagnetism near room temperature in the cleavable van der Waals crystal Fe5GeTe2. ACS Nano 13, 4436–4442 (2019).

    Article  Google Scholar 

  32. Liu, S. et al. Wafer-scale two-dimensional ferromagnetic Fe3GeTe2 thin films grown by molecular beam epitaxy. npj 2D Mater. Appl. 1, 30 (2017).

  33. Liu, S. et al. Tuning 2D magnetism in Fe3+XGeTe2 films by element doping. Natl Sci. Rev. 9, nwab117 (2021).

    Article  Google Scholar 

  34. Carcia, P. F., Meinhaldt, A. D. & Suna, A. Perpendicular magnetic anisotropy in Pd/Co thin film layered structures. Appl. Phys. Lett. 47, 178–180 (1985).

    Article  Google Scholar 

  35. Ikeda, S. et al. A perpendicular-anisotropy CoFeB–MgO magnetic tunnel junction. Nat. Mater. 9, 721–724 (2010).

    Article  Google Scholar 

  36. Fei, Z. et al. Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2. Nat. Mater. 17, 778–782 (2018).

    Article  Google Scholar 

  37. Liu, W. Q. et al. Atomic-scale iterfacial magnetism in Fe/graphene heterojunction. Sci. Rep. 5, 11911 (2015).

    Article  Google Scholar 

  38. Liu, W. et al. Probing the buried magnetic interfaces. ACS Appl. Mater. Interfaces 8, 5752–5757 (2016).

    Article  Google Scholar 

  39. Zhu, J.-X. et al. Electronic correlation and magnetism in the ferromagnetic metal Fe3GeTe2. Phys. Rev. B 93, 144404 (2016).

    Article  Google Scholar 

  40. Liu, W. Q. et al. Spin and orbital moments of nanoscale Fe3O4 epitaxial thin film on MgO/GaAs(100). Appl. Phys. Lett. 104, 142407 (2014).

    Article  Google Scholar 

  41. Khan, I. & Hong, J. High Curie temperature and strain-induced semiconductor-metal transition with spin reorientation transition in 2D CrPbTe3 monolayer. Nanotechnology 31, 195704 (2020).

    Article  Google Scholar 

  42. Zhou, S., Sun, X.-Q. & Carr, W. N. A micro variable inductor chip using MEMS relays. In Proc. International Solid State Sensors and Actuators Conference (Transducers ’97) 2, 1137–1140 (IEEE, 1997).

  43. Djuric, S., Stojanovic, G., Damnjanovic, M., Radovanovic, M. & Laboure, E. Design, modeling, and analysis of a compact planar transformer. IEEE Trans. Magn. 48, 4135–4138 (2012).

    Article  Google Scholar 

  44. Ribas, R. P., Lescot, J., Leclercq, J.-L., Karam, J. M. & Ndagijimana, F. Micromachined microwave planar spiral inductors and transformers. IEEE Trans. Microw. Theory Techn. 48, 1326–1335 (2000).

    Article  Google Scholar 

  45. Oshiro, O., Tsujimoto, H. & Shirae, K. Structures and characteristics of planar transformers. IEEE Transl. J. Magn. Jpn 4, 332–338 (1989).

    Article  Google Scholar 

  46. Kawabe, K., Koyama, H. & Shirae, K. Planar inductor. IEEE Trans. Magn. 20, 1804–1806 (1984).

    Article  Google Scholar 

  47. Oshiro, O., Tsujimoto, H. & Shirae, K. A novel miniature planar inductor. IEEE Trans. Magn. 23, 3759–3761 (1987).

    Article  Google Scholar 

  48. Oshiro, O., Tsujimoto, H. & Shirae, K. High frequency characteristics of a planar inductor and a magnetic coupling control device. IEEE Transl. J. Magn. Jpn 6, 436–442 (1991).

    Article  Google Scholar 

  49. Oshiro, O., Tsujimoto, H. & Shirae, K. A closed-type planar inductor. IEEE Transl. J. Magn. Jpn 2, 329–330 (1987).

    Article  Google Scholar 

  50. Ahn, C. H. & Allen, M. G. Micromachined planar inductors on silicon wafers for MEMS applications. IEEE Trans. Ind. Electron. 45, 866–876 (1998).

    Article  Google Scholar 

  51. Mu, Y. Mutual inductive magnetic sensor consisting of a pair of coplanar parallel winding spiral coils sandwiched by soft magnetic ribbons. J. Magn. Magn. Mater. 7, 168558 (2022).

    Article  Google Scholar 

  52. Wang, N., O’Donnell, T., Roy, S., McCloskey, P. & O’Mathuna, C. Micro-inductors integrated on silicon for power supply on chip. J. Magn. Magn. Mater. 5, e233–e237 (2007).

    Article  Google Scholar 

  53. Fukuda, Y., Inoue, T., Mizoguchi, T., Yatabe, S. & Tachi, Y. Planar inductor with ferrite layers for d.c.-d.c. converter. IEEE Trans. Magn. 39, 2057–2061 (2003).

    Article  Google Scholar 

  54. Yu, S., Wen, Y., Li, P. & Wang, Y. Intrinsic noise in magnetic film/planar coil sensors. J. Magn. Magn. Mater. 518, 167381 (2021).

    Article  Google Scholar 

  55. Talebian, S., Hojjat, Y., Ghodsi, M. & Karafi, M. R. Study on classical and excess eddy currents losses of Terfenol-D. J. Magn. Magn. Mater. 388, 150–159 (2015).

    Article  Google Scholar 

  56. Jassal, A., Polinder, H. & Ferreira, J. A. Literature survey of eddy-current loss analysis in rotating electrical machines. IET Electr. Power Appl. 6, 743–752 (2012).

    Article  Google Scholar 

  57. Lim, J.-S., Kim, C.-S., Ahn, D., Jeong, Y.-C. & Nam, S. Design of low-pass filters using defected ground structure. IEEE Trans. Microw. Theory Techn. 53, 2539–2545 (2005).

    Article  Google Scholar 

  58. Chen, X. et al. Thermal cycling induced alteration of the stacking order and spin-flip in the room temperature van der Waals magnet Fe5GeTe2. Preprint at https://arxiv.org/abs/2209.04560 (2022).

  59. Chen, X. et al. Pervasive beyond room-temperature ferromagnetism in a doped van der Waals magnet. Phys. Rev. Lett. 128, 217203 (2022).

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (52225207 and 11934005), the National Key Research and Development Program of China (2018YFA0305601), the Shanghai Municipal Science and Technology Major Project (grant no. 2019SHZDZX01), the Program of Shanghai Academic/Technology Research Leader (grant no. 20XD1400200), the Shanghai Pilot Program for Basic Research—Fudan University 21TQ1400100 (21TQ006), Beijing Natural Science Foundation (Z180014) and National Basic Research Program of China (grant no. 2014CB921101, 2016YFA0300803). Diamond Light Source is acknowledged to I10 under proposal MM22532. W.L. acknowledges support from UK EPSRC (EP/S010246/1), Royal Society (IEC\NSFC\181680) and Leverhulme Trust (LTSRF1819\15\12). N.B.J. is supported by the Prime Minister’s Research Fellowship. R.B. and A.N. acknowledge support from the Indian Institute of Science. A.N. further acknowledges support from DST-SERB (project no. SRG/2020/000153). Part of the sample fabrication was performed at Fudan Nano-fabrication Laboratory. We thank A. F. May and P. Shafer for discussion about the XMCD data.

Author information

Authors and Affiliations

Authors

Contributions

F.X. proposed the research and supervised the overall experiments. Z.L. and S.L. synthesized the high-quality Fe5+xGeTe2 thin films and fabricated the devices. Z.L., S.L., Y.Y., L.A., E.Z., P.L., M.Z. and C.H. carried out the physical property measurement system measurements. Z.L., S.L., X. Xie. and E.Z. analysed the transport and SQUID data. J. Zhu. and X. Xu. performed the RMCD and MOKE measurements and analysis. J.S. and W.L. performed the XMCD measurement and analysed the XMCD data. Z.L. and S.L. conducted the XRD measurements. Y.C. and J. Zou. performed the TEM characterizations and analysis. N.B.J., R.B. and A.N. carried out the theoretical calculations. Z.L., S.L. and F.X. wrote the paper with assistance from all the other authors.

Corresponding author

Correspondence to Faxian Xiu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Electronics thanks Yu He for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–7, Figs. 1–18 and Tables 1 and 2.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Liu, S., Sun, J. et al. Low-pass filters based on van der Waals ferromagnets. Nat Electron 6, 273–280 (2023). https://doi.org/10.1038/s41928-023-00941-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41928-023-00941-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing