Abstract
Magnetic insulators, which have long-range magnetic order and are electrically insulating, allow spin propagation without electron motion and could be used to create dissipationless magnetoelectric and magneto-optical devices. Atomically thin two-dimensional (2D) magnetic insulators could, in particular, be used to fabricate compact devices. However, the efficient electrical control of 2D magnetic insulators remains a challenge due to difficulties in electrostatically doping such insulators and the inability of external electric fields to modify their crystal fields. Here we report the electrical control of the 2D magnetic insulator chromium germanium telluride (Cr2Ge2Te6) using a thin ferroelectric polymer. We show that ±5 V across the Cr2Ge2Te6/polymer heterostructures can open and close the magnetic hysteresis loop. The magnetic modulation is non-volatile, and is observed in bilayer, trilayer and four-layer Cr2Ge2Te6, but not in thicker eight-layer Cr2Ge2Te6, which indicates the importance of the interfacial multiferroic effect. The heterostructure multiferroics also enable direct electrical toggling between two magnetization states.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout




Data availability
The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.
Code availability
The codes used for plotting the data are available from the corresponding author upon reasonable request.
References
Chumak, A. V., Vasyuchka, V. I., Serga, A. A. & Hillebrands, B. Magnon spintronics. Nat. Phys. 11, 453–461 (2015).
Neusser, S. & Grundler, D. Magnonics: spin waves on the nanoscale. Adv. Mater. 21, 2927–2932 (2009).
Kajiwara, Y. et al. Transmission of electrical signals by spin-wave interconversion in a magnetic insulator. Nature 464, 262–266 (2010).
Cornelissen, L. J., Liu, J., Duine, R. A., Youssef, J. B. & van Wees, B. J. Long-distance transport of magnon spin information in a magnetic insulator at room temperature. Nat. Phys. 11, 1022–1026 (2015).
Subkhangulov, R. R. et al. Terahertz modulation of the Faraday rotation by laser pulses via the optical Kerr effect. Nat. Photon. 10, 111–114 (2016).
Khazanov, E. et al. Effect of terbium gallium garnet crystal orientation on the isolation ratio of a Faraday isolator at high average power. Appl. Opt. 41, 483–492 (2002).
Yoshida, H. et al. Optical properties and Faraday effect of ceramic terbium gallium garnet for a room temperature Faraday rotator. Opt. Express 19, 15181–15187 (2011).
Chu, Y.-H. et al. Electric-field control of local ferromagnetism using a magnetoelectric multiferroic. Nat. Mater. 7, 478–482 (2008).
Spaldin, N. A. & Ramesh, R. Advances in magnetoelectric multiferroics. Nat. Mater. 18, 203–212 (2019).
Baek, S. H. et al. Ferroelastic switching for nanoscale non-volatile magnetoelectric devices. Nat. Mater. 9, 309–314 (2010).
Manipatruni, S. et al. Scalable energy-efficient magnetoelectric spin–orbit logic. Nature 565, 35–42 (2019).
Mankalale, M. G. et al. CoMET: composite-input magnetoelectric-based logic technology. IEEE J. Explor. Solid-State Computat. 3, 27–36 (2017).
Gong, C. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 546, 265–269 (2017).
Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546, 270–273 (2017).
Heron, J. T. et al. Electric-field-induced magnetization reversal in a ferromagnet-multiferroic heterostructure. Phys. Rev. Lett. 107, 217202 (2011).
Novoselov, K. S., Mishchenko, A., Carvalho, A. & Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016).
Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).
Si, M., Liao, P.-Y., Qiu, G., Duan, Y. & Ye, P. D. Ferroelectric field-effect transistors based on MoS2 and CuInP2S6 two-dimensional van der Waals heterostructure. ACS Nano 12, 6700–6705 (2018).
Ohno, H. et al. Electric-field control of ferromagnetism. Nature 408, 944–947 (2000).
Dobrowolska, M. et al. Controlling the Curie temperature in (Ga,Mn)As through location of the Fermi level within the impurity band. Nat. Mater. 11, 444–449 (2012).
Weisheit, M. et al. Electric field-induced modification of magnetism in thin-film ferromagnets. Science 315, 349–351 (2007).
Duan, C. G. et al. Surface magnetoelectric effect in ferromagnetic metal films. Phys. Rev. Lett. 101, 137201 (2008).
Huang, B. et al. Electrical control of 2D magnetism in bilayer CrI3. Nat. Nanotechnol. 13, 544–548 (2018).
Jiang, S., Li, L., Wang, Z., Mak, K. F. & Shan, J. Controlling magnetism in 2D CrI3 by electrostatic doping. Nat. Nanotechnol. 13, 549–553 (2018).
Wang, Z. et al. Electric-field control of magnetism in a few-layered van der Waals ferromagnetic semiconductor. Nat. Nanotechnol. 13, 554–559 (2018).
Gong, C., Kim, E. M., Wang, Y., Lee, G. & Zhang, X. Multiferroicity in atomic van der Waals heterostructures. Nat. Commun. 10, 2657 (2019).
Qi, J., Wang, H., Chen, X. & Qian, X. Two-dimensional multiferroic semiconductors with coexisting ferroelectricity and ferromagnetism. Appl. Phys. Lett. 113, 043102 (2018).
Nakhmanson, S. M., Rabe, K. M. & Vanderbilt, D. Polarization enhancement in two- and three-component ferroelectric superlattices. Appl. Phys. Lett. 87, 102906 (2005).
Liu, F. et al. Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes. Nat. Commun. 7, 12357 (2016).
Wu, D. et al. Thickness-dependent dielectric constant of few-layer In2Se3 nanoflakes. Nano Lett. 15, 8136–8140 (2015).
Chen, X., Han, X. & Shen, Q.-D. PVDF-based ferroelectric polymers in modern flexible electronics. Adv. Electron. Mater. 3, 1600460 (2017).
Neese, B. et al. Large electrocaloric effect in ferroelectric polymers near room temperature. Science 321, 821–823 (2008).
Nemes-Incze, P., Osváth, Z., Kamarás, K. & Biró, L. P. Anomalies in thickness measurements of graphene and few layer graphite crystals by tapping mode atomic force microscopy. Carbon 46, 1435–1442 (2008).
Salahuddin, S. & Datta, S. Use of negative capacitance to provide voltage amplification for low power nanoscale devices. Nano Lett. 8, 405–410 (2008).
Rajapitamahuni, A., Hoffman, J., Ahn, C. H. & Hong, X. Examining graphene field effect sensors for ferroelectric thin film studies. Nano Lett. 13, 4374–4379 (2013).
Hu, J.-M., Chen, L.-Q. & Nan, C.-W. Multiferroic heterostructures integrating ferroelectric and magnetic materials. Adv. Mater. 28, 15–39 (2016).
Matsukura, F., Tokura, Y. & Ohno, H. Control of magnetism by electric fields. Nat. Nanotechnol. 10, 209–220 (2015).
Gong, C. & Zhang, X. Two-dimensional magnetic crystals and emergent heterostructure devices. Science 363, eaav4450 (2019).
Acknowledgements
C.G. acknowledges support from the Air Force Office of Scientific Research under award no. FA9550-22-1-0349, Naval Air Warfare Center Aircraft Division under award no. N00421-22-1-0001, Army Research Laboratory under cooperative agreement no. W911NF-19-2-0181, National Science Foundation under award nos. CMMI-2233592 and 49100423C0011, and Northrop Grumman Mission Systems’ University Research Program. I.Ž. acknowledges support from the Air Force Office of Scientific Research under award no. FA9550-22-1-0349 and National Science Foundation under award nos. CMMI-2233375 and ECCS-2130845. S.-J.G. acknowledges support from the National Natural Science Foundation of China under award no. 62274066. J.-P.W. acknowledges support from the Robert F. Hartmann Endowed Chair Professorship. M.A.S. and B.S.C. acknowledge support from the United States Air Force Office of Scientific Research LRIR 18RQCOR100 and AOARD-MOST grant no. F4GGA21207H002. B.S.C. further acknowledges the National Research Council Senior Fellowship award. C.G. is grateful for the fruitful discussions with J. Chang, R. Howell and Q. Zhang.
Author information
Authors and Affiliations
Contributions
C.G. conceived and supervised the project. S.L. conducted the exfoliation of 2D samples and device fabrication with the assistance of T.X. S.L. and T.X. performed the RMCD measurements under the supervision of C.G., with the assistance of Z.S. for the Raman spectroscopic measurements. N.A.B. conducted the capacitance measurements under the supervision of A.L.F. T.E. carried out the AFM measurements under the supervision of M.O. T.Z. conducted the DFT calculations under the supervision of I.Ž. M.A.S. and B.S.C. synthesized the bulk single crystals of Cr2Ge2Te6. S.-J.G. partially provided the understanding of the DFT method. J.-P.W. contributed to the potential spintronic-devices-related discussion. S.L. and C.G. analysed the data. S.L., J.L., X.Z. and C.G. wrote the paper. All the authors commented on the paper.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Electronics thanks Manfred Fiebig and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Figs. 1–9, figure notes and Note 1.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Liang, S., Xie, T., Blumenschein, N.A. et al. Small-voltage multiferroic control of two-dimensional magnetic insulators. Nat Electron 6, 199–205 (2023). https://doi.org/10.1038/s41928-023-00931-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41928-023-00931-1