Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

The future of brain–machine interfaces is optical

Optical interfaces could be used to address challenges related to scaling, precision and invasiveness in the development of brain–machine interfaces.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Volumetric patterning in optical neural interfaces.

References

  1. Moxon, K. A. & Foffani, G. Neuron 86, 55–67 (2015).

    Article  Google Scholar 

  2. Lee, M. B. et al. J. Clin. Neurosci. 68, 13–19 (2019).

    Article  Google Scholar 

  3. Murphy, M. D., Guggenmos, D. J., Bundy, D. T. & Nudo, R. J. Front. Cell. Neurosci. 9, 497 (2016).

    Article  Google Scholar 

  4. Marblestone, A. H. et al. Front. Comput. Neurosci. 7, 137 (2013).

    Article  Google Scholar 

  5. Zrenner, C., Belardinelli, P., Müller-Dahlhaus, F. & Ziemann, U. Front. Cell. Neurosci. 10, 92 (2016).

    Article  Google Scholar 

  6. Juavinett, A. L., Bekheet, G. & Churchland, A. K. eLife 8, e47188 (2019).

    Article  Google Scholar 

  7. Kleinfeld, D. et al. Neuron 103, 1005–1015 (2019).

    Article  Google Scholar 

  8. Merrill, D. R., Bikson, M. & Jefferys, J. G. R. J. Neurosci. Methods 141, 171–198 (2005).

    Article  Google Scholar 

  9. Gong, Y. et al. Science 350, 1361–1366 (2015).

    Article  Google Scholar 

  10. Pégard, N. C. et al. Nat. Commun. 8, 1228 (2017).

    Article  Google Scholar 

  11. Marshel, J. H. et al. Science 365, eaaw5202 (2019).

    Article  Google Scholar 

  12. Papagiakoumou, E., Ronzitti, E. & Emiliani, V. Nat. Methods 17, 571–581 (2020).

    Article  Google Scholar 

  13. Ronzitti, E. et al. J. Neurosci. 37, 10679–10689 (2017).

    Article  Google Scholar 

  14. Villette, V. et al. Cell 179, 1590–1608 (2019).

    Article  Google Scholar 

  15. Chamberland, S. et al. eLife 6, e25690 (2017).

    Article  Google Scholar 

  16. Sakaki, K. D. R., Podgorski, K., Dellazizzo Toth, T. A., Coleman, P. & Haas, K. Front. Neural Circ. 14, 33 (2020).

    Article  Google Scholar 

  17. Go, M. A., Mueller, M., Castañares, M. L., Egger, V. & Daria, V. R. PLoS ONE 14, e0210564 (2019).

  18. Gigan, S. et al. J. Phys. Photon. 4, 42501 (2022).

    Article  Google Scholar 

  19. Li, Z. et al. Sci. Adv. 6, eaaz3870 (2020).

    Article  Google Scholar 

  20. Mardinly, A. R. et al. Nat. Neurosci. 21, 881–893 (2018).

    Article  Google Scholar 

  21. Shane, J. C., McKnight, D. J., Hill, A., Taberski, K. & Serati, S. In Proc. Optical Trapping and Optical Micromanipulation XVI (eds Dholakia, K. & Spalding, G. C.) Vol. 11083, 3 (SPIE, 2019).

  22. Eybposh, M. H., Curtis, V. R., Rodríguez-Romaguera, J. & Pégard, N. C. Neurophotonics 9, 41409 (2022).

    Article  Google Scholar 

  23. Schmieder, F. et al. Appl. Sci. 8, 1180 (2018).

    Article  Google Scholar 

  24. Sun, H., Qiao, Q., Guan, Q. & Zhou, G. Micromachines 13, 1509 (2022).

    Article  Google Scholar 

  25. Panuski, C. L. et al. Nat. Photon. 16, 834–842 (2022).

    Article  Google Scholar 

  26. Norton, A. et al. In MEMS Adaptive Optics III (eds Olivier, S. S. et al.) Vol. 7209, 134–140 (SPIE, 2009).

  27. Landry, J., Hamann, S. & Solgaard, O. J. Biomed. Opt. 25, 106504 (2020).

    Article  Google Scholar 

  28. Bartlett, T. A. et al. In Emerging Digital Micromirror Device Based Systems and Applications XIII (eds Ehmke, J. & Lee, B. L.) Vol. 11698, 103–116 (SPIE, 2021).

  29. Ersumo, N. T. et al. Light Sci. Appl. 9, 183 (2020).

    Article  Google Scholar 

  30. Bendek, E. A. et al. J. Astron. Telesc. Instrum. Syst. 6, 45001 (2020).

    Google Scholar 

  31. Yalcin, C. et al. IEEE J. Solid-State Circuits 57, 3442–3452 (2022).

  32. Kim, T. H. et al. Cell Rep. 17, 3385–3394 (2016).

    Article  Google Scholar 

  33. Adesnik, H. & Abdeladim, L. Nat. Neurosci. 24, 1356–1366 (2021).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rikky Muller.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ersaro, N.T., Yalcin, C. & Muller, R. The future of brain–machine interfaces is optical. Nat Electron 6, 96–98 (2023). https://doi.org/10.1038/s41928-023-00926-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41928-023-00926-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing