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Large-area synthesis and transfer of 
multilayer hexagonal boron nitride for 
enhanced graphene device arrays

Satoru Fukamachi1, Pablo Solís-Fernández    1, Kenji Kawahara1, Daichi Tanaka2, 
Toru Otake2, Yung-Chang Lin    3, Kazu Suenaga4 & Hiroki Ago    1,2 

Multilayer hexagonal boron nitride (hBN) can be used to preserve the 
intrinsic physical properties of other two-dimensional materials in 
device structures. However, integrating the material into large-scale 
two-dimensional heterostructures remains challenging due to the 
difficulties in synthesizing high-quality large-area multilayer hBN and 
combining it with other two-dimensional material layers of the same scale. 
Here we show that centimetre-scale multilayer hBN can be synthesized 
on iron–nickel alloy foil by chemical vapour deposition, and then used 
as a substrate and as a surface-protecting layer in graphene field-effect 
transistors. We also develop an integrated electrochemical transfer and 
thermal treatment method that allows us to create high-performance 
graphene/hBN heterostacks. Arrays of graphene field-effect transistors 
fabricated by conventional and scalable methods show an enhancement 
in room-temperature carrier mobility when hBN is used as an insulating 
substrate, and a further increase—up to a value of 10,000 cm2 V−1 s−1—when 
graphene is encapsulated with another hBN sheet.

Two-dimensional (2D) materials offer a range of unique physical prop-
erties and could be used to create a variety of different electronic and 
photonic devices1. Since 2D materials mostly consist of surface atoms, 
they are highly sensitive to the underlying substrate, as well as to gas 
adsorbates and polymer impurities that can originate from the transfer 
and device fabrication process. Hexagonal boron nitride (hBN)—a 2D 
insulator with a bandgap of around 6 eV—has an atomically flat surface, 
high chemical stability and high optical transparency in the visible 
range2,3. Multilayer hBN has, thus, become a key material to exploit 
the intrinsic physical properties of various 2D materials by protecting 
them from structural and electrostatic perturbations caused by their 
surroundings4–9.

By using thick hBN layers, high carrier mobility and superconduc-
tivity have been observed in monolayer and twisted bilayer graphene, 
respectively4,6. Multilayer hBN has been used in graphene field-effect 

transistors (FETs) between graphene and a SiO2 substrate, to screen the 
influence of SiO2 (such as surface roughness, charged impurities and 
dangling bonds) and realize the intrinsic high carrier mobility of mon-
olayer graphene4,5,9. Multilayer hBN improves the optical properties of 
transition metal dichalcogenides and has enabled the observation of 
valleytronics and moiré physics8,10. In addition, hBN itself is a promis-
ing material for various applications, including ultraviolet-light emit-
ters2, single-photon emitters11, gas barrier films12 and tunnel magnetic 
resistance devices13.

Graphene and transition metal dichalcogenides can be made at 
large scales by chemical vapour deposition (CVD) or metal–organic 
CVD14,15. However, the synthesis of uniform multilayer hBN at similar 
scales is not well established. Large-area monolayer hBN can be syn-
thesized using CVD on transition metal foils, such as copper16–19 and 
platinum20,21, as well as on thin films such as Cu(111) (refs. 22,23), Ni(111) 
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generally uniform and free from very thick flakes (>30 nm), which 
are observed in hBN grown on Fe foils (Supplementary Fig. 1). The 
low-magnification image (Fig. 1b, inset) shows a 1 × 1 cm2 SiO2 substrate 
almost fully covered with multilayer hBN. Moreover, as shown in Fig. 1d,  
the use of commercial Fe–Ni foils enables the large-scale synthesis of 
multilayer hBN at a relatively low cost. These features are important 
for wafer-scale integration with other 2D materials, such as graphene 
and transition metal dichalcogenides.

Figure 1e,f displays the atomic force microscopy (AFM) images of 
the hBN surface measured after electrochemical transfer and succes-
sive H2 annealing at 300 °C for 3 h. Here hBN has a very clean and flat 
surface with a low surface roughness (Rq) of 0.19 nm, except for a few 
wrinkles that were formed due to the different thermal expansion coef-
ficients of hBN and Fe–Ni foil. The AFM height profile (Fig. 1f) indicates 
the presence of multilayer hBN with a thickness of ~6 nm, whereas the 
thickness of other areas was around 2–10 nm. We found that H2 anneal-
ing is effective in cleaning the hBN surface by removing contamination 
originated in the transfer process (Extended Data Fig. 1a,b). A clean 
graphene–hBN interface is crucial for the high performance of gra-
phene devices, as discussed further below. For comparison, we carried 
out the same cleaning procedure for the wet-transferred multilayer 
hBNwet. As shown in Extended Data Fig. 1c,d, the same H2 annealing 
procedure did not completely remove the contamination, with large 
particles observed on the surface, mainly originating from the undis-
solved metal catalyst. Therefore, electrochemical transfer was more 
effective for hBN grown on Fe–Ni alloy foils.

X-ray photoelectron spectroscopy (XPS) of hBNele showed the 
B1s and N1s peaks at 190.4 and 398.0 eV, respectively (Fig. 1g,h). From 
the XPS peak intensities and their sensitivity factors, a [B]:[N] ratio of 
1.00:0.92 was obtained for the transferred hBNele, consistent with that 
expected for hBN considering the possible error of XPS (Supplemen-
tary Fig. 2)47. There was no major difference in the [B]:[N] ratio for the 
as-grown hBN, transferred hBN and that after H2 annealing at 300 °C 
(Supplementary Fig. 2), indicating that the transfer process as well as H2 
annealing did not degrade the quality of multilayer hBN. X-ray diffrac-
tion was also measured for a transferred hBNele, showing a clear (002) 
diffraction peak that indicates the successful growth and transfer of 
multilayer hBN (Supplementary Fig. 3).

The uniformity and quality of hBN were also studied by Raman 
spectroscopy, due to the sensitivity of the E2g phonon mode to the thick-
ness and crystallinity of hBN. Here hBNele showed a clear and sharp E2g 
band, with homogeneous intensity over the surface that indicates the 
thickness uniformity of hBN (Fig. 1i,j). The average position of the E2g 
mode was 1,366.2 cm−1 (Fig. 1k), close to the value expected for bulk hBN 
(1,366.0 cm−1) (refs. 3,48), ensuring that hBN has sufficient thickness for 
use as a substrate for other 2D materials. The narrow linewidth of the 
E2g band (full-width at half-maximum (FWHM), FWHM(E2g)) indicates 
the high crystallinity of hBN (ref. 49). The distribution of FWHM(E2g) of 
our hBN film varies between 9.0 and 13.0 cm−1, with an average value 
of 9.9 cm−1 (Fig. 1l). Although slightly larger than those reported for 
exfoliated flakes from hBN single crystal (7–8 cm−1) (ref. 49), these val-
ues are much smaller than those observed for CVD films synthesized 
without a metal catalyst (25–60 cm−1) (refs. 31–33) and smaller than those 
of multilayer hBN grown on Fe–Ni thin films (average value, 17–18 cm−1) 
(refs. 40,41). These differences can be ascribed to the higher crystallinity 
and larger thickness of the present hBN.

The high crystallinity of hBN was also confirmed by scanning 
transmission electron microscopy (STEM), which clearly shows the 
honeycomb lattice of multilayer hBN with a thickness of roughly 8 nm, 
as determined by the zero-loss spectrum (Fig. 1m and Extended Data 
Fig. 2). Selected-area electron diffraction (SAED) patterns of the mul-
tilayer hBN indicated an AA’ stacking with a sufficiently large grain size 
(Extended Data Fig. 3). The grain size was also determined by epitaxially 
growing monolayer molybdenum disulfide (MoS2) on hBN. The orienta-
tion of the grown triangular MoS2 grains reflect the lattice orientation 

(refs. 24–26) and Ir(111) (ref. 27). However, monolayer hBN is not thick 
enough to effectively reduce the influences of SiO2 surfaces and gas 
adsorption. Though multilayer hBN films can be obtained without a 
metal catalyst28–33, they have low crystallinity and small grain sizes. 
Therefore, catalytic CVD based on the dissolution and segregation 
of boron and nitrogen atoms with a transition metal catalyst appears 
to be a more promising route for the synthesis of highly crystalline 
hBN34–38. However, it remains challenging to synthesize multilayer 
hBN with sufficient uniformity and thickness due to difficulty in con-
trolling segregation at high temperatures39–41. Electron-beam (EB) 
lithography is typically used in research on graphene/hBN devices to 
define specific uniform areas of CVD-grown multilayer hBN that avoids 
wrinkles, height steps, bubbles and other inhomogeneities that can 
deteriorate the device performance34,39. However, this is not scalable 
for commercial applications, which require the uniform distribution 
of a large number of graphene/hBN devices over a large area.

An additional problem for large-scale device application is the 
transfer process and integration of 2D materials into heterostacks. 
High-performance graphene devices are typically fabricated by trans-
ferring exfoliated graphene and hBN flakes using dry transfer tech-
niques with a polymeric stamp42,43. This provides clean interfaces and 
precise control of the position and orientation of stacks but cannot be 
easily applied to large sheets of hBN and graphene. For the transfer of 
larger areas, wet etching37,40,41 and electrochemical bubbling34,44,45 are 
the most commonly used techniques, but there are few studies report-
ing the stacking of CVD-grown graphene on CVD-grown hBN and the 
investigation of their physical properties and device performance at 
large scales34,46.

In this article, we report the CVD growth of large-area multilayer 
hBN and its integration with CVD-grown graphene. The hBN multi-
layers, which have thicknesses of around 5 nm and scales of several 
centimetres, are grown on an iron–nickel (Fe–Ni) alloy foil. Then, hBN 
is transferred to a SiO2 substrate using an electrochemical bubbling 
method and annealed with hydrogen gas after each transfer step. 
We fabricate distributed arrays of graphene FETs by transferring 
centimetre-scale CVD-grown graphene onto our hBN films, and the 
electrical performance of large numbers of devices is characterized. 
The graphene FETs show an increase in mobility when supported on 
hBN (maximum hole mobility of 7,074 cm2 V−1 s−1 and electron mobility 
of 7,284 cm2 V−1 s−1) due to the screening of charge impurities from the 
SiO2 substrate, even though the channels were uniformly fabricated 
across the sample surface. This is further increased when graphene 
is encapsulated with a top layer of hBN (maximum hole and electron 
mobility of 10,219 and 9,571 cm2 V−1 s−1, respectively). Notably, this 
enhancement is observed only after the electrochemical bubbling and 
annealing transfer process, indicating that careful tuning of the transfer 
process is critical for device applications at large scales.

CVD growth of uniform multilayer hBN on Fe–Ni 
foil
Large-area multilayer hBN was grown on polycrystalline Fe–Ni alloy foils 
with borazine (B3N3H6) feedstock (Fig. 1a). The combination of Fe and 
Ni can suppress the local segregation of hBN that occurs in pure Fe foil 
as well as the structural transformation of pure Fe at higher tempera-
tures40,41. The use of commercial Fe–Ni foils allowed us to grow thicker 
hBN at large scales and reduced costs. Then, hBN was transferred to a 
SiO2/Si substrate by an electrochemical bubbling method (hereafter 
called ‘electrochemical transfer’, where hBNele refers to hBN transferred 
using this method) (Methods); for comparison, we also employed a 
wet-etching transfer method (hereafter called ‘wet transfer’ and hBNwet, 
respectively).

Optical micrographs of a multilayer hBNele film transferred on 
SiO2 are shown in Fig. 1b,c. The film exhibits a clear optical contrast, 
indicating the formation of multilayer hBN (refs. 40,41). Although the 
Fe–Ni foil is polycrystalline and has many grain boundaries, hBN is 
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of the underlying hBN, allowing us to visualize the grain structure of 
multilayer hBN in a similar way as that previously developed for mon-
olayer graphene50. As shown in Extended Data Fig. 4, the grain size of 
hBN was found to be large (>20 μm).

Cathodoluminescence (CL) is very sensitive to the quality of hBN, 
that is, the crystallinity and presence of defects and impurities2,51–53. 
Figure 1n shows the CL spectrum of our multilayer hBN transferred 

on a doped Si substrate. The sharp peak at 215 nm, explained by the 
emission from free excitons, is normally observed in high-quality 
single-crystal hBN (refs. 2,49,52,53). The observation of this peak, which 
was not reported for the previous CVD-grown hBN on Ni foil54, demon-
strates the high quality of our CVD hBN for use as a 2D insulating layer. 
Other peaks observed at higher wavelengths (222, 229 and 235 nm) are 
mainly attributed to the emission from bound excitons induced by the 
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Fig. 1 | Synthesis and characterization of multilayer hBN. a, CVD setup used to 
grow multilayer hBN on Fe–Ni alloy foil. b,c, Optical micrographs of multilayer 
hBNele transferred on SiO2/Si. The inset in b is the low-magnification image of the 
hBN sheet. d, Photograph of the large-area transferred hBN. e,f, AFM images and 
height profile of the transferred hBN after H2 annealing. The height profile was 
measured along the yellow line in f. g,h, High-resolution B1s (g) and N1s (h) XPS 
spectra. i, Mapping image of the Raman E2g band intensity measured for the hBN 

transferred on SiO2. j, Raman spectra collected at the marked positions in i. k,l, 
Distributions of the E2g band position (k) and FWHM (l). m, STEM image and SAED 
pattern (inset) taken from multilayer hBN. n, CL spectrum of the transferred hBN 
measured at 90 K. o, Optical absorption spectrum of hBN transferred on a quartz 
substrate. The inset shows the Tauc plot, indicating that the CVD-grown hBN has 
a bandgap of 6.0 eV.
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stacking disorder of hBN layers49, whereas the broad peaks at ~280 and 
~325 nm can be explained by impurities due to possible contamina-
tion from the B3N3H6 source and/or CVD chamber49. However, given 
the high sensitivity of CL to the presence of defects and impurities, it 
should be noted that the density of impurities is sufficiently low. To 
support this, no impurities were observed by XPS, except for oxygen 
and carbon, which are normally unavoidable due to surface adsorption 
and environmental effects. Optical absorption (Fig. 1o) also shows 
evidence of the formation of hBN. The hBN exhibited an absorption 
peak at 201.5 nm, being transparent in the whole visible range. The 
bandgap estimated from the Tauc plot (Fig. 1o, inset) is 6.0 eV, again 
proving the growth of hBN.

Our comprehensive investigations using AFM, XPS, Raman, STEM 
and CL measurements indicate that the multilayer hBN grown on Fe–Ni 
alloy foils has high crystalline quality and sufficient thickness for appli-
cation as an insulating substrate for other 2D materials.

Large-area stacks of graphene on multilayer hBN
To investigate the effectiveness of CVD-grown multilayer hBN as an 
insulating 2D substrate, large-area graphene/hBN heterostructures 
were fabricated on SiO2/Si by employing a multiple transfer process. The 
process started with the transfer of as-grown multilayer hBN from Fe–Ni 
foil onto a SiO2 substrate followed by annealing in a H2–Ar mixed flow at 
300 °C (Fig. 2a,b and Methods). Monolayer graphene synthesized on a 
Cu(111) thin film55,56 was subsequently transferred onto the hBN, followed 
by additional annealing in H2–Ar (Fig. 2c,d). Finally, hBN/graphene/
hBN sandwiched heterostructures were fabricated by transferring an 
additional multilayer hBN sheet over the stack (Fig. 2e). As discussed 
below, the most critical steps for obtaining high-quality heterostacks are 
the electrochemical transfer of hBN and annealing in H2 after each step, 
resulting in reduced densities of impurities and bubbles at the graphene–
hBN interface, thus enhancing the performance of graphene devices.

Effects of substrate and hBN transfer process on graphene were 
studied by Raman spectroscopy. Figure 3 shows the typical Raman 
spectra of graphene transferred on SiO2 (Fig. 3a), hBNele (Fig. 3d) and 
hBNwet (Fig. 3g). Reflecting the high crystallinity of graphene grown 
on Cu(111), the Raman spectrum of graphene/SiO2 showed a negligi-
bly small defect-related D band (~1,350 cm−1) and an intensity ratio 
of 2D band to G band (I2D/IG) higher than 2 (Fig. 3a). The linewidth of 
the 2D band (FWHM(2D)), which is sensitive to strain and doping5,57, 
ranges from 30 to 35 cm−1 with an average value of 32 cm−1 (Fig. 3b). The 
FWHM(2D) mapping showed a uniform spatial distribution (Fig. 3c),  
suggesting that graphene is under relatively uniform conditions.

Graphene transferred on hBNele has an increased I2D/IG ratio, sug-
gesting decoupling from the SiO2 surface (Fig. 3d). More importantly, 
the 2D band became much narrower (average, 25 cm−1), as evident in the 
FWHM(2D) histogram and mapping image (Fig. 3e,f). This is an indica-
tion of a decrease in the strain and/or doping of graphene. We plotted 
the positions of 2D and G bands (Fig. 3j) to determine the amount of 
doping and strain of graphene for each sample57. Graphene directly 
transferred on SiO2 (grey points) suffered from p-type doping in addi-
tion to strain. In contrast, the plot for graphene on hBNele (red) mostly 
follows the line of strain. This indicates that our hBN, even grown by 
catalytic CVD, can effectively cancel the effect of charged impurities 
on the SiO2 surface.

It should also be mentioned that the post-H2 annealing process 
substantially reduced the FWHM(2D) of graphene, especially for gra-
phene/hBNele (Extended Data Fig. 5b). This can be explained by the 
enhanced coupling between graphene and hBNele that reduces the 
negative influences from impurities at the interfaces, such as bubbles 
and contaminants. Moreover, neither the transfer process nor anneal-
ing induced any damage in graphene, which maintained its high quality 
(evident from the magnified Raman spectra; Supplementary Fig. 4).  
The graphene/hBN heterostacks showed only the E2g band of  
hBN without any appreciable D band from graphene (Supplementary 
Fig. 4b,c), indicating the presence of hBN underneath the graphene 
and the low defect density in the transferred graphene.

In contrast, the graphene transferred on hBNwet showed a wide 
distribution of FWHM(2D), as shown in the histogram and Raman map-
ping (Fig. 3h,i). We speculate that the previously described impurities 
on hBNwet (Extended Data Fig. 1d) are trapped at the interfaces of hBN 
with graphene and SiO2. This causes the broadening of the 2D band of 
graphene due to an inhomogeneous distribution of strain (Fig. 3h). 
Thus, the screening effect expected for multilayer hBNwet is cancelled 
by the presence of such impurities. The presence of impurities and 
wrinkles in hBNwet also deteriorate the surface morphology of mon-
olayer graphene transferred on top, as discussed later.

Overall, our results signify that the multilayer hBN transferred by 
the electrochemical method is effective to screen out the influences 
from the SiO2 surface and highlights the importance of the transfer 
process.

Characterization of the graphene–hBN interface
The interface between graphene and hBN was investigated by meas-
uring the cross-section of the graphene/hBNele stack on SiO2 using 
transmission electron microscopy (TEM). The TEM images (Fig. 4a and 
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Supplementary Fig. 5) exhibit a clear and continuous layered structure 
with a thickness of ~4.1 nm, supporting the high crystallinity of hBN. 
This crystallinity is partly due to the segregation process induced by 
the Fe–Ni foil. In contrast, disordered or disconnected layered struc-
tures have been reported for multilayer hBN sheets grown on Cu foil, 

Ni foil and sapphire58,59. The solubility of boron and nitrogen atoms is 
low in these substrates; therefore, the vapour-phase reactions could 
contribute to the growth of hBN multilayers with very small grains.

Figure 4b,c shows a high-magnification TEM image of the 
cross-section and the corresponding contrast profile, respectively. The 
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interlayer distances observed in the profile are 0.33 nm, except for the 
longer interlayer distance (0.38 nm) between the top and second layers 
of the graphene/hBN stack. This suggests that the top layer is mon-
olayer graphene deposited on 11 layers of hBN. The longer interlayer 
distance observed between the top graphene and hBN can be explained 
by the different stacking angle and different stacked materials.

To confirm that the observed layered structure is a graphene/
hBN stack, we further analysed the cross-section by using the annular 
dark-field STEM and electron energy loss spectroscopy (EELS) data 
(Fig. 4d–f). At point 1 (Fig. 4d, layered structure), the EELS data showed 
the existence of both boron and nitrogen atoms (Fig. 4e), indicating 
the presence of multilayer hBN. At points 2 and 3, signals from carbon 
were detected (Fig. 4f). For comparison, the EELS spectra of monolayer 
graphene (top view) and amorphous carbon (a-C) are also included 
(Fig. 4f). The EELS spectrum at point 2 exhibited a distinctive shoulder 
peak at 291 eV (black arrow), which corresponds to the carbon σ* band. 
This sharp σ* component indicates the presence of the sp2 network of 
graphene, which cannot be observed in a-C. Previous study indicated 
that the EELS σ* peak is much weaker when the EB is incident parallel to 
the graphene sheet than when it is incident in the normal direction60. 
The reference spectrum of graphene (Fig. 4f, orange spectrum) was 
collected with the EB normal to the graphene sheet. Therefore, it is rea-
sonable that we observed a weak σ* peak for the present cross-sectional 
TEM image (point 2; Fig. 4f, red spectrum). On the contrary, no sharp σ* 
component was observed at the top a-C protective layer (point 3; Fig. 4f,  
blue spectrum). Therefore, from the EELS spectra, we confirmed the 
presence of monolayer graphene on the top of multilayer hBN.

Device fabrication and characteristics of 
large-area graphene–hBN heterostacks
One of the most important roles of multilayer hBN is as an insulating 
substrate for 2D materials in electronic devices, for example to enhance 
the carrier mobility of graphene FETs4. Therefore, to demonstrate 
the potential of our CVD-grown hBN at large scales, we compared the 

performance of graphene FETs fabricated on SiO2 and on multilayer 
hBNele. In contrast to devices reported in the previous studies, which 
were positioned at carefully selected areas using EB lithography34,39, we 
employed photolithography to make large arrays of graphene FETs for 
a more systematic investigation of the influence of CVD-grown hBN and 
to prove the scalability of our approach. The detailed device fabrica-
tion process is presented in Extended Data Fig. 6. Figure 5a displays a 
photograph of the device arrays, with graphene/hBN on the left side 
of the substrate and graphene/SiO2 on the right side, which allows a 
reliable comparison of the different types of device by avoiding dif-
ferences that might arise when processing them on different wafers. 
Figure 5b shows an optical micrograph of a graphene/hBNele channel 
whose width and length are about 3 and 9 μm, respectively.

Figure 5c shows the typical transfer curves of graphene FETs 
fabricated on bare SiO2 (grey) and on multilayer hBNwet (blue) and 
hBNele (red). The figure also includes the transfer curve obtained for 
a device with graphene encapsulated by the hBN (green). All these 
devices showed symmetric transfer curves with the Dirac point at 
around −10 to 5 V. The carrier mobility determined for each device 
type is summarized in Fig. 5d–g, with the cumulative curves shown in 
Fig. 5h. For a reliable analysis, a large number of channels (>60 chan-
nels) were measured for each device type. The carrier mobility of 
graphene on hBNwet was found to be generally lower than that on 
SiO2 substrate (Fig. 5d,e), whereas the mobility was clearly enhanced 
for graphene on hBNele (Fig. 5f and Extended Data Fig. 7). Extended 
Data Table 1 compares the maximum and average carrier mobilities. 
The highest electron mobility of 7,284 cm2 V−1 s−1 (hole mobility, 
7,074 cm2 V−1 s−1) was observed on a graphene/hBNele channel, whereas 
that of graphene on SiO2 was 5,384 cm2 V−1 s−1 (5,217 cm2 V−1 s−1). The 
average mobility was also enhanced by introducing hBNele as a sub-
strate (Extended Data Table 1). Thus, our hBN multilayers are shown 
to effectively increase the mobility of graphene devices at centimetre 
scales, whereas previous work reported a decrease in mobility with 
respect to SiO2 (ref. 46).
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To understand the possible reasons for the difference in carrier 
mobilities, some representative FET channels were examined by AFM 
(Fig. 5d–f, insets). The graphene on SiO2 showed a smooth surface with 
some low wrinkles (height of a few nanometres) (Fig. 5d, inset). The gra-
phene/hBNwet device exhibits the presence of many small particles and 
of high wrinkles probably originating in hBN (Fig. 5e, inset). Therefore, 
the decrease in carrier mobilities of graphene on wet-transferred hBN 
seems to be caused by these small particles and wrinkles.

The AFM image of graphene on hBNele exhibits wrinkles and bub-
bles, but the surface is much cleaner than that on hBNwet (Fig. 5e,f, 
inset). In most previous research, including those studying exfoliated 
samples, EB lithography was used to define FETs at specific areas with 
relatively small channel sizes34,39. Therefore, it is worth noting that 
the mobility of graphene here increased with hBN, even though the 
channels were uniformly fabricated across the sample surface employ-
ing conventional and scalable methods rather than making devices 
at predefined positions. Despite the presence of these wrinkles and 
bubbles, the carrier mobility of graphene was enhanced owing to 
the good insulating nature of multilayer hBN and to the efficiency of 
the transfer method. Post-transfer H2 annealing was also effective to 
increase the mobility owing to a reduction in the density of bubbles 
at the interface. To understand the effect of bubbles and wrinkles 
on mobility, the channels of graphene/hBNele devices with different 

mobilities were examined by AFM (Extended Data Fig. 8). All the devices 
contain wrinkles and bubbles, but their density is slightly lower in the 
device showing the highest mobility. Concerning the possible effect 
of hBN grain boundaries on the performance of devices, it is expected 
to be much smaller than that from wrinkles and bubbles, given that 
the grain sizes (>20 μm) are much larger than the size of the devices 
(Extended Data Fig. 4).

The carrier mobility can be further improved by encapsulating gra-
phene with hBNele sheets (Fig. 5g–i). The encapsulated devices showed 
the highest hole and electron mobilities of 10,219 and 9,571 cm2 V−1 s−1, 
respectively (Extended Data Table 1). We speculate that the dielectric 
screening effect of the upper graphene surface by hBN sheet and the 
complete encapsulation with hBN sheets further increased the carrier 
mobilities.

Since the two-terminal field-effect mobility underestimates the 
mobility due to contact resistance, the actual mobility may be higher 
than the above values. As shown in Fig. 5g (inset), bubbles are agglomer-
ated along the wrinkles after transferring the top hBNele layer, making 
other areas very flat. The corresponding Raman spectra showed a sharp 
2D band, narrower than that of graphene/hBNele and graphene/SiO2 
(Extended Data Fig. 9). Although the bubbles can be locally removed 
by scanning the surface with AFM tips61, this is only effective for a small 
area and not applicable to wafer-scale devices. Thus, further studies 
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are necessary to establish a bubble-free transfer method for large-scale 
2D wafers. In addition, a method to suppress the formation of wrinkles 
in the CVD-grown hBN needs to be developed.

In Fig. 5i, the hole mobilities are plotted against the Dirac points 
(Extended Data Fig. 7 shows the mobilities of both holes and electrons). 
The coloured ellipses indicate the areas within the 95% confidence 
interval (σ = 2). It is apparent that the electrochemically transferred 
large-area hBN can greatly improve the transport properties of mon-
olayer graphene even though multilayer hBN was grown by the CVD 
method. From the measurement of the devices fabricated on the same 
wafer (Fig. 5a), we observed the tendency of hBNele to slightly shift the 
Dirac point of graphene to more negative values compared with the 
devices on SiO2. Although the exact reason for this is not clear, it is 
consistent with the suppression of p-type doping by hBNele observed 
in the Raman measurements (Fig. 3j). On the other hand, the encap-
sulated device (hBNele/graphene/hBNele) shows more positive Dirac 
point values than graphene/hBNele devices. Since the encapsulation 
was performed in ambient condition, oxygen and other gases might 
be trapped at the hBN–graphene interface, acting as p-type dopants.

A comparison of the carrier mobilities with those reported 
in previous studies are listed in Supplementary Table 1. Although  
some of the discussed works reported higher mobility values34,39, it 
should be noted that the devices in such cases were fabricated by EB 
lithography at selected positions. In contrast, here we fabricated large 
arrays of graphene FETs evenly distributed over large areas by photo-
lithography (Fig. 5a). This is a more scalable procedure that allowed 
us to perform a systematic comparison of different types of device  
(Fig. 5c–i), including different transfer methods for hBN. Thus, we  
demonstrated that high carrier mobilities can be attained at centimetre 
scales even in the presence of wrinkles and bubbles. This indicates the 
suitability of large-area and uniform multilayer hBN grown on Fe–Ni 
foil combined with optimized transfer and annealing processes for 2D 
electronics. Our work demonstrates the great potential of CVD-grown 
hBN multilayers and sheds light on the issues that need to be addressed 
for future wafer-scale integrations using large-area hBN wafers.

Conclusions
We have reported the synthesis of high-quality multilayer hBN over 
large areas by CVD on Fe–Ni alloy foils. The hBN multilayer was used to 
fabricate heterostacks with CVD-grown graphene on centimetre scales; 
using only conventional and scalable fabrication methods, uniformly 
distributed arrays of graphene/hBN FETs were fabricated and charac-
terized. An increase in the device performance with hBN substrate was 
observed compared with SiO2 substrate after optimizing the transfer 
process and fabrication methods. In particular, the electrochemical 
transfer of hBN and annealing in H2 gas after each fabrication step was 
found to be essential for the graphene/hBN devices to perform better 
than on SiO2. Although the improved performance of graphene devices 
on hBN substrates has been previously reported, this has been typically 
restricted to devices fabricated at selected small areas where the quality 
is high (that is, that avoids wrinkles, bubbles and inhomogeneity). Here 
we observe increased mobilities for large arrays of devices uniformly 
fabricated across the hBN using scalable fabrication methods. When 
the graphene FETs were encapsulated with an additional top layer of 
hBN, they exhibited a maximum hole mobility of 10,219 cm2 V−1 s−1 (aver-
age, 5,477 cm2 V−1 s−1) and electron mobility of 9,571 cm2 V−1 s−1 (average, 
5,551 cm2 V−1 s−1). The high carrier mobilities observed for devices dis-
tributed over large areas highlights the potential of CVD-grown hBN 
multilayers in the development of future 2D electronic devices.

Methods
CVD growth of multilayer hBN
Multilayer hBN was grown on 20-μm-thick Fe–Ni alloy foils (Super Invar, 
mainly composed of Fe (~64%) and Ni (32%); Nilaco). Low-pressure CVD 
was conducted by flowing B3N3H6 in H2 gas at ~1,200 °C and maintaining 

a constant pressure of 30 Pa. Before introducing B3N3H6 vapour, the foil 
was annealed in H2 flow to clean its surface as well as to remove surface 
oxide and organic impurities. After flowing the B3N3H6 vapour for 
30 min, the sample was cooled down to 700 °C (cooling rate, 5 °C min−1) 
to promote the uniform segregation of hBN, and then rapidly cooled 
down to room temperature.

CVD growth of monolayer graphene
Monolayer graphene was synthesized on an epitaxial Cu(111) thin film 
deposited on c-plane sapphire by ambient-pressure CVD at 1,075 °C 
using CH4 feedstock55,56,62. This catalyst produces high-quality graphene 
with controlled lattice orientation and almost free from multilayers, 
unlike graphene grown on polycrystalline Cu foils.

Fabrication process of large-area graphene–hBN heterostacks
Large-area graphene/hBN heterostacks were fabricated on SiO2/Si by a 
multiple transfer process (Fig. 2). First, the as-grown hBN is protected 
by a polymethyl methacrylate (PMMA) film and electrochemically 
delaminated in a 1 M NaOH solution45. For comparison, hBN was also 
transferred by the chemical etching of Fe–Ni in FeCl3–HCl (0.2 M:2.0 M) 
solution. The PMMA/hBN was then transferred on a SiO2/Si substrate 
and PMMA was removed with hot acetone. The hBN was then annealed 
under a H2–Ar mixed flow (10% H2) at 300 °C for 3 h before stacking 
monolayer graphene. This resulted in a cleaner hBN surface by remov-
ing small nanoparticles, probably originating from the PMMA residue 
(Extended Data Fig. 1). The thermal decomposition temperature of 
PMMA is 283–327 °C, at which the mass of PMMA becomes half after 
30 min of heating in a vacuum63. As H2 gas can further enhance decom-
position via hydrogenation, it is likely that most of the PMMA residue 
can be effectively eliminated by heating under a H2 flow at 300 °C for 
3 h. The as-grown graphene was then transferred onto hBN, either by 
electrochemical or wet-etching methods using a PMMA support layer, 
as we did not notice a major difference in the final quality of graphene 
(Supplementary Fig. 6). After removing the PMMA with acetone, the 
graphene/hBN stack was annealed again in H2–Ar. An additional hBN 
layer can be transferred to form hBN/graphene/hBN heterostacks, fol-
lowing the same procedure as that for the transfer of the first hBN layer.

As indicated, hBN and graphene were separately transferred, 
rather than sequentially transferring graphene on as-grown hBN, and 
then both on SiO2. Although the latter may give a cleaner interface, the 
former allows a more reliable analysis of surface cleanliness, thickness 
and crystallinity of hBN films before the transfer of graphene, as well as 
allows us to perform H2 annealing after each transfer step.

Characterizations
Optical and AFM images were collected by Keyence VHX-7000 and 
Bruker Nanoscope V, respectively. Raman spectra and mappings were 
obtained with a Nanofinder 30 (Tokyo Instruments) using 532 nm 
laser excitation. XPS and CL spectra were collected using Shimadzu 
KRATOS NovaAXIS-165 and MP-Micro-IRP (attached to a HITACHI 
S4000 instrument), respectively. The CL was recorded for hBN on a 
doped Si substrate at 90 K. X-ray diffraction was measured with RIGAKU 
RINTIII using Cu Kα radiation (1.5418 Å). The optical absorption of hBN 
was measured with a Shimadzu UV-3600 device. The cross-sectional 
TEM and STEM measurements were performed using JEOL JEM-F200 
(200 kV) and JEOL ARM200F Dual-X (80 kV; spot size, 0.2 nm), respec-
tively, for a graphene/hBNele device that was cut from the silicon wafer 
by a focused ion beam. The surface of graphene was protected by 
depositing a layer of a-C before the focused ion beam. EELS was meas-
ured with Gatan Enfinium ER. The top-view STEM and TEM images 
were measured with JEOL Triple C #1 microscope, a JEOL2100F-based 
microscope equipped with double JEOL delta correctors, and a cold 
field-emission gun operating at 60 kV. The probe current is about 15 μA 
for both STEM and TEM observations. The selected-area aperture for 
acquiring the SAED data in the TEM mode was about 1 μm in diameter.
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Device fabrication and measurement
For device measurements, hBN was transferred to half of a SiO2 sub-
strate, followed by transferring monolayer graphene on the whole sub-
strate (Fig. 5a). Making both graphene/hBN stack and graphene-only 
channels on the same SiO2 wafer allowed for a reliable comparison 
of the different types of device by avoiding differences that might 
arise when processing them on different wafers. Photolithography 
and O2 plasma treatments were applied to pattern the channels of the 
graphene layer. Then, second photolithography was performed to pat-
tern the electrodes. The metal electrodes (Au(20 nm)/Ni(3 nm)) were 
deposited by EB evaporation, followed by lift-off. After introducing the 
device wafer to the probe station, it was annealed in a vacuum (200 °C) 
for 15 h before the transport measurements. The transport measure-
ments were performed at room temperature in a vacuum (<5 × 10−4 Pa) 
using a Keysight B1500A semiconductor device parameter analyser. 
Field-effect mobilities (μFE) were calculated by the following equation 
for both holes and electrons:

μFE = ( ∂Id
∂Vg

) L
WCoxVd

, (1)

where L and W are the channel length and width, respectively, and Vg and 
Vd are the gate and drain voltages, respectively. Also, Cox is the dielectric 
capacitance (1.15 × 10−4 F m−2 for 300-nm-thick SiO2).

Data availability
The data that support the findings of this study are available from the 
corresponding author upon reasonable request.
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Extended Data Fig. 1 | AFM images of multilayer hBN films transferred from 
Fe-Ni foils. a, hBN transferred by the electrochemical method. b, The same 
sample was annealed in H2 at 300 °C for 3 hr. c, hBN transferred by the wet etching 
method. d, The same sample was annealed in H2 at 300 °C for 3 hr. The wet 
transferred hBN showed many residues even after the annealing in H2 at 300 °C 

(d), while the electrochemically transferred hBN exhibits a clean surface (b). The 
remaining residues in d are supposed to be originated mainly in the undissolved 
metal catalyst (Fe and Ni). These residues deteriorate the physical properties of 
monolayer graphene when transferred on this hBN sheet. The surface roughness 
(Rq) was measured for the whole image and for the areas indicated by squares.
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Extended Data Fig. 2 | STEM and TEM analyses of CVD-grown multilayer hBN. 
a, STEM image of multilayer hBN. b, STEM image of an edge of the hBN showing 
that the hBN has more than 10 layers. c,d. TEM images of the multilayer hBN. In d, 
the electron beam created defects on the surface of the multilayer hBN, making 
thinner areas. The observed triangular defects (highlighted by dashed lines in 
d) are representative of the hBN defect structure. e, EELS spectrum indicating 
the presence of both B and N. f, Thickness of hBN calculated from the zero-loss 

spectrum. The thickness was calculated using the following equation, based on 
the log-ratio technique64. t/λ = ln(Ιt/Ι0) where t and λ are the hBN thickness and 
local inelastic mean free path, respectively. It is the total number of electrons in 
the EELS spectrum and I0 is the number of electrons with no loss energy (the zero-
loss peak). It is the sum of I0 and the intensity of the inelastic peak (Iinel.). It = I0+Iinel. 
Our EELS measurement indicates that the hBN film has a thickness of about 8 nm 
in the measured region.
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Extended Data Fig. 3 | Measurement of the hBN lattice orientation. a, TEM 
image of one of the holes in the TEM grid used to measure SAED. This hole is 
mostly covered with multilayer hBN. The measured sample is same as that in 
Extended Data Fig. 2. The yellow circle indicates one of the areas used for the 

SAED measurement. b-e, SAED patterns measured at different grid holes. These 
diffraction patterns show that the hBN has AA’ stacking and that the alignment is 
consistent within a given grain. The grain size determined by the SAED is about 
10 μm × 20 μm.
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Extended Data Fig. 4 | MoS2-based grain structure analysis of multilayer hBN. 
a, Low magnification false-colored SEM image, highlighting the grain structure 
of hBN determined from the orientations of MoS2 grains. Angles indicate the 
relative orientations of the hBN grains. b, High magnification SEM images 
displaying triangular MoS2 grains aligned within a hBN grain. These images 
correspond to the areas highlighted in a. c, Raman spectrum collected at the 
yellow circle in a. After the transfer of CVD-grown multilayer hBN onto a SiO2 

substrate, it was subjected to the CVD growth of MoS2 grains using MoO3and 
sulfur50. The MoS2 triangular grains were epitaxially grown on the hBN surface 
so that the orientation of the MoS2 grain indicates the lattice orientation of 
the underlying hBN. This method, originally developed for polycrystalline 
monolayer graphene50, allowed us to visualize the grain structure of our 
multilayer hBN.
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Extended Data Fig. 5 | Influence of H2 annealing on the Raman spectra of graphene. Monolayer graphene was transferred on SiO2 (a), hBNele (b), and hBNwet (c). The 
FWHM(2D) distributions are plotted before and after the H2 annealing (300 °C in H2-Ar flow for 3 hours). Insets show the Raman mappings of the FWHM(2D) for each 
sample.
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Extended Data Fig. 6 | Process flow of the FET fabrication and measurement. This process flow indicates the device fabrication and measurement steps for a 
graphene/hBNele heterostack sample.
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Extended Data Fig. 7 | Carrier mobility distributions of graphene FETs. The hole and electron mobilities are plotted against the Dirac point for all types of devices.

http://www.nature.com/natureelectronics


Nature Electronics

Article https://doi.org/10.1038/s41928-022-00911-x

Extended Data Fig. 8 | Transfer characteristics and corresponding AFM 
images of graphene/hBNele channels. a, The channel with the highest hole  
and electron mobilities. b, The channel with the 5th highest hole mobility.  

c, A channel with moderate mobilities. d, The channel with the lowest hole 
mobility. The total number of measured devices was 70. The highest mobility 
device (a) contains less wrinkles and bubbles with uniform hBN thickness.
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Extended Data Fig. 9 | Raman analysis of the hBNele/graphene/hBNele 
sandwich structure. a, Raman FWHM(2D) distributions of monolayer graphene 
sandwiched by hBNele films. b, Raman FWHM(2D) distributions measured 

after the H2-annealing process. Insets show the Raman mapping images of 
the FWHM(2D). The encapsulation with multilayer hBN further reduced the 
FWHM(2D) of the graphene/hBNele heterostack.
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Extended Data Table. 1 | Carrier mobilities of graphene FETs obtained in this work*1
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