Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Wirelessly powered large-area electronics for the Internet of Things

A Publisher Correction to this article was published on 24 January 2023

This article has been updated

Abstract

Powering the increasing number of sensor nodes used in the Internet of Things creates a technological challenge. The economic and sustainability issues of battery-powered devices mean that wirelessly powered operation—combined with environmentally friendly circuit technologies—will be needed. Large-area electronics—which can be based on organic semiconductors, amorphous metal oxide semiconductors, semiconducting carbon nanotubes and two-dimensional semiconductors—could provide a solution. Here we examine the potential of large-area electronics technology in the development of sustainable, wirelessly powered Internet of Things sensor nodes. We provide a system-level analysis of wirelessly powered sensor nodes, identifying the constraints faced by such devices and highlighting promising architectures and design approaches. We then explore the use of large-area electronics technology in wirelessly powered Internet of Things sensor nodes, with a focus on low-power transistor circuits for digital processing and signal amplification, as well as high-speed diodes and printed antennas for data communication and radiofrequency energy harvesting.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: LAE sensor nodes for sustainable IoT.
Fig. 2: System view of wirelessly powered sensor nodes.
Fig. 3: Ultralow-power LAEs.
Fig. 4: High-speed diodes for radiofrequency energy harvesting.

Similar content being viewed by others

Data availability

Data associated with the original plots presented in this article (Figs. 2d,e, 3a,b and 4) are available from the corresponding authors upon reasonable request.

Change history

References

  1. Hassan, Q. F. (ed.) Internet of Things A to Z (Wiley, 2018).

  2. Arias, R., Lueth, K. L. & Rastogi, A. The effect of the Internet of Things on sustainability. World Economic Forum https://www.weforum.org/agenda/2018/01/effect-technology-sustainability-sdgs-internet-things-iot/ (2018).

  3. Sparks, P. The economics of a trillion connected devices. Arm Community Blogs https://community.arm.com/arm-community-blogs/b/internet-of-things-blog/posts/white-paper-the-route-to-a-trillion-devices (2017).

  4. Pecunia, V., Occhipinti, L. G. & Hoye, R. L. Z. Emerging indoor photovoltaic technologies for sustainable Internet of Things. Adv. Energy Mater. 11, 2100698 (2021).

    Article  Google Scholar 

  5. Harrop, P. Battery Elimination in Electronics and Electrical Engineering 2018–2028 (IDTechEx, 2017).

  6. Kang, D. H. P., Chen, M. & Ogunseitan, O. A. Potential environmental and human health impacts of rechargeable lithium batteries in electronic waste. Environ. Sci. Technol. 47, 5495–5503 (2013).

    Article  Google Scholar 

  7. Mineral Commodity Summaries 2022—Lithium (US Geological Survey, 2022); https://doi.org/10.3133/mcs2022

  8. Energizer CR2032 Product Datasheet (Energizer); https://data.energizer.com/pdfs/cr2032.pdf

  9. Boyd, S. B. Life-Cycle Assessment of Semiconductors (Springer, 2012).

  10. Zheng, L.-R., Tenhunen, H. & Zou, Z. Smart Electronic Systems 243–267 (Wiley-VCH, 2018).

  11. CENELEC European Standardisation Organisation Directive 2012/19/EU of the European Parliament and of the Council of 4 July 2012 on Waste Electrical and Electronic Equipment (WEEE) (EUR-Lex, 2012); https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:02012L0019-20180704

  12. National Strategy for Electronics Stewardship (NSES) (US EPA, 2022); https://www.epa.gov/smm-electronics/national-strategy-electronics-stewardship-nses

  13. PragmatIC Development of a Modular, Integrated and Autonomous ‘Factory-in-a-Box’ Production Line for Manufacturing High Volumes of Flexible Integrated Logic Circuits (EC, 2018); https://cordis.europa.eu/project/id/726029

  14. Gong, J., Darling, S. B. & You, F. Perovskite photovoltaics: life-cycle assessment of energy and environmental impacts. Energy Environ. Sci. 8, 1953–1968 (2015).

    Article  Google Scholar 

  15. Fuentes-Hernandez, C. et al. Large-area low-noise flexible organic photodiodes for detecting faint visible light. Science 370, 698–701 (2020).

    Article  Google Scholar 

  16. Maisch, P. et al. in Organic Flexible Electronics (eds Cosseddu, P. & Caironi, M.) 305–333 (Elsevier, 2021).

  17. Liu, J. et al. Future paper based printed circuit boards for green electronics: fabrication and life cycle assessment. Energy Environ. Sci. 7, 3674–3682 (2014).

    Article  Google Scholar 

  18. Williams, N. X., Bullard, G., Brooke, N., Therien, M. J. & Franklin, A. D. Printable and recyclable carbon electronics using crystalline nanocellulose dielectrics. Nat. Electron. 4, 261–268 (2021).

    Article  Google Scholar 

  19. Jiang, C. et al. Printed subthreshold organic transistors operating at high gain and ultralow power. Science 363, 719–723 (2019).

    Article  Google Scholar 

  20. Portilla, L. et al. Ambipolar deep-subthreshold printed-carbon-nanotube transistors for ultralow-voltage and ultralow-power electronics. ACS Nano 14, 14036–14046 (2020).

    Article  Google Scholar 

  21. Lee, S. & Nathan, A. Subthreshold Schottky-barrier thin-film transistors with ultralow power and high intrinsic gain. Science 354, 302–304 (2016).

    Article  Google Scholar 

  22. Peng, Y. et al. Lead-free perovskite-inspired absorbers for indoor photovoltaics. Adv. Energy Mater. 11, 2002761 (2021).

    Article  Google Scholar 

  23. Biggs, J. et al. A natively flexible 32-bit Arm microprocessor. Nature 595, 532–536 (2021).

    Article  Google Scholar 

  24. Georgiadou, D. G. et al. 100 GHz zinc oxide Schottky diodes processed from solution on a wafer scale. Nat. Electron. 3, 718–725 (2020).

    Article  Google Scholar 

  25. Eid, A., Hester, J. G. D. & Tentzeris, M. M. 5G as a wireless power grid. Sci. Rep. 11, 636 (2021).

    Article  Google Scholar 

  26. Mathews, I., Kantareddy, S. N., Buonassisi, T. & Peters, I. M. Technology and market perspective for indoor photovoltaic cells. Joule 3, 1415–1426 (2019).

    Article  Google Scholar 

  27. Elsaegh, S. et al. Low-power organic light sensor array based on active-matrix common-gate transimpedance amplifier on foil for imaging applications. IEEE J. Solid State Circuits 55, 2553–2566 (2020).

    Article  Google Scholar 

  28. Garripoli, C., Abdinia, S., van der Steen, J.-L. J. P., Gelinck, G. H. & Cantatore, E. A fully integrated 11.2-mm2 a-IGZO EMG front-end circuit on flexible substrate achieving up to 41-dB SNR and 29-MΩ input impedance. IEEE Solid State Circuits Lett. 1, 142–145 (2018).

  29. Papadopoulos, N. P. et al. Toward temperature tracking with unipolar metal-oxide thin-film SAR C-2C ADC on plastic. IEEE J. Solid State Circuits 53, 2263–2272 (2018).

    Article  Google Scholar 

  30. Fattori, M. et al. A fully-printed organic smart temperature sensor for cold chain monitoring applications. In 2020 IEEE Custom Integrated Circuits Conference (CICC) 1–4 (IEEE, 2020).

  31. Myny, K. et al. 15.2 A flexible ISO14443-A compliant 7.5 mW 128 b metal oxide NFC barcode tag with direct clock division circuit from 13.56 MHz carrier. In 2017 IEEE International Solid-State Circuits Conference (ISSCC) 258–259 (IEEE, 2017).

  32. Fattori, M. Circuit Design for Low-Cost Smart Sensing Applications Based on Printed Flexible Electronics (Technische Univ. Eindhoven, 2019).

  33. Ozer, E. et al. A hardwired machine learning processing engine fabricated with submicron metal oxide thin-film transistors on a flexible substrate. Nat. Electron. 3, 419–425 (2020).

    Article  Google Scholar 

  34. Liu, Y. & Ang, K.-W. Monolithically integrated flexible black phosphorus complementary inverter circuits. ACS Nano 11, 7416–7423 (2017).

    Article  Google Scholar 

  35. Yuan, Y. et al. Oxide-based complementary inverters with high gain and nanowatt power consumption. IEEE Electron Device Lett. 39, 1676–1679 (2018).

    Article  Google Scholar 

  36. Zschieschang, U., Bader, V. P. & Klauk, H. Below-one-volt organic thin-film transistors with large on/off current ratios. Org. Electron. 49, 179–186 (2017).

    Article  Google Scholar 

  37. Hills, G. et al. Modern microprocessor built from complementary carbon nanotube transistors. Nature 572, 595–602 (2019).

    Article  Google Scholar 

  38. Pecunia, V., Fattori, M., Abdinia, S., Sirringhaus, H. & Cantatore, E. Organic and Amorphous-Metal-Oxide Flexible Analogue Electronics (Cambridge Univ. Press, 2018).

  39. Cheng, X., Lee, S. & Nathan, A. Deep subthreshold TFT operation and design window for analog gain stages. IEEE J. Electron Devices Soc. 6, 195–200 (2018).

    Article  Google Scholar 

  40. Dyson, M. How Flexible Integrated Circuits Unlock Their Potential (IDTechEx, 2020).

  41. Kim, S. et al. Ambient RF energy-harvesting technologies for self-sustainable standalone wireless sensor platforms. Proc. IEEE 102, 1649–1666 (2014).

    Article  Google Scholar 

  42. Kanaujia, B. K., Singh, N. & Kumar, S. Rectenna: Wireless Energy Harvesting System (Springer, 2021).

  43. Viola, F. A. et al. A 13.56 MHz rectifier based on fully inkjet printed organic diodes. Adv. Mater. 32, 2002329 (2020).

    Article  Google Scholar 

  44. Zhang, X. et al. Two-dimensional MoS2-enabled flexible rectenna for Wi-Fi-band wireless energy harvesting. Nature 566, 368–372 (2019).

    Article  Google Scholar 

  45. Balocco, C., Halsall, M., Vinh, N. Q. & Song, A. M. THz operation of asymmetric-nanochannel devices. J. Phys. Condens. Matter 20, 384203 (2008).

    Article  Google Scholar 

  46. Shaygan, M. et al. High performance metal–insulator–graphene diodes for radio frequency power detection application. Nanoscale 9, 11944–11950 (2017).

    Article  Google Scholar 

  47. Wang, Z. et al. Flexible one-dimensional metal–insulator–graphene diode. ACS Appl. Electron. Mater. 1, 945–950 (2019).

    Article  Google Scholar 

  48. Loganathan, K. et al. Rapid and up-scalable manufacturing of gigahertz nanogap diodes. Nat. Commun. 13, 3260 (2022).

    Article  Google Scholar 

  49. Loganathan, K. et al. 14 GHz Schottky diodes using a p-doped organic polymer. Adv. Mater. 34, e2108524 (2022).

    Article  Google Scholar 

  50. Hester, J. G. D. & Tentzeris, M. M. A mm-wave ultra-long-range energy-autonomous printed RFID-enabled Van-Atta wireless sensor: at the crossroads of 5G and IoT. In IEEE MTT-S International Microwave Symposium Digest 1557–1560 (IEEE, 2017).

  51. Eid, A., Hester, J. G. D. & Tentzeris, M. M. Rotman lens-based wide angular coverage and high-gain semipassive architecture for ultralong range mm-wave RFIDs. IEEE Antennas Wirel. Propag. Lett. 19, 1943–1947 (2020).

    Article  Google Scholar 

  52. Park, Y. et al. Liquid metal‐based soft electronics for wearable healthcare. Adv. Healthc. Mater. 10, 2002280 (2021).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Thomas D. Anthopoulos or Vincenzo Pecunia.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Electronics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Portilla, L., Loganathan, K., Faber, H. et al. Wirelessly powered large-area electronics for the Internet of Things. Nat Electron 6, 10–17 (2023). https://doi.org/10.1038/s41928-022-00898-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41928-022-00898-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing