Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Molybdenum disulfide transistors with enlarged van der Waals gaps at their dielectric interface via oxygen accumulation

Abstract

Two-dimensional molybdenum disulfide (MoS2) is a potential alternative channel material to silicon for future scaled transistors. Scaling down the gate dielectric and maintaining a high-quality interface is challenging with such materials, because the atomic thickness of MoS2 makes it sensitive to defects common in amorphous gate oxides such as hafnium oxide (HfOx). Here we show that a van der Waals gap of 5.3 Å can be formed between HfOx and MoS2 via the ozone treatment of a hafnium disulfide (HfS2)/MoS2 stack. The ozone treatment converts the HfS2 flake into a HfOx dielectric, and excess oxygen accumulation at the interface widens the van der Waals gap. Experimental results and density functional theory calculations show that the increased gap decouples the interaction between the HfOx dielectric and MoS2 channel, allowing the intrinsic properties of the MoS2 semiconductor to be preserved. The resulting MoS2 van der Waals-gap-gated transistors exhibit a negligible hysteresis of 10 mV and average subthreshold slope of 63.1 mV dec−1, which is close to the physical Boltzmann limit of 60.0 mV dec−1. We also show that the transistors can be used to construct NOT, OR and AND logic gates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic and vdW gap at the dielectric/channel interface.
Fig. 2: DFT results of the contact structures after melt-and-quench simulation.
Fig. 3: Electrical performance of top-gate MoS2 VGG transistors.
Fig. 4: Stability of MoS2 VGG transistors.
Fig. 5: Logic gates made with MoS2 VGG transistors.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding authors on reasonable request.

References

  1. Desai, S. B. et al. MoS2 transistors with 1-nanometer gate lengths. Science 354, 99–102 (2016).

    Article  Google Scholar 

  2. Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011).

    Article  Google Scholar 

  3. Li, W. et al. Uniform and ultrathin high-κ gate dielectrics for two-dimensional electronic devices. Nat. Electron. 2, 563–571 (2019).

    Article  Google Scholar 

  4. Illarionov, Y. Y. et al. Ultrathin calcium fluoride insulators for two-dimensional field-effect transistors. Nat. Electron. 2, 230–235 (2019).

    Article  Google Scholar 

  5. Zou, X. et al. Interface engineering for high-performance top-gated MoS2 field-effect transistors. Adv. Mater. 26, 6255–6261 (2014).

    Article  Google Scholar 

  6. Bano, A. & Gaur, N. K. Interfacial coupling effect on electron transport in MoS2/SrTiO3 heterostructure: an ab-initio study. Sci. Rep. 8, 714 (2018).

    Article  Google Scholar 

  7. Liu, X. et al. Bonding and charge transfer by metal adatom adsorption on graphene. Phys. Rev. B 83, 235411 (2011).

    Article  Google Scholar 

  8. Schmidt, H., Giustiniano, F. & Eda, G. Electronic transport properties of transition metal dichalcogenide field-effect devices: surface and interface effects. Chem. Soc. Rev. 44, 7715–7736 (2015).

    Article  Google Scholar 

  9. Illarionov, Y. Y. et al. Reliability of scalable MoS2 FETs with 2 nm crystalline CaF2 insulators. 2D Mater. 6, 045004 (2019).

    Article  Google Scholar 

  10. Dahal, A. et al. Seeding atomic layer deposition of alumina on graphene with yttria. ACS Appl. Mater. Interfaces 7, 2082–2087 (2015).

    Article  Google Scholar 

  11. Das, S. et al. Transistors based on two-dimensional materials for future integrated circuits. Nat. Electron. 4, 786–799 (2021).

    Article  Google Scholar 

  12. Knobloch, T. et al. Improving stability in two-dimensional transistors with amorphous gate oxides by Fermi-level tuning. Nat. Electron. 5, 356–366 (2022).

    Article  Google Scholar 

  13. Tan, Q., Zhang, X., Luo, X., Zhang, J. & Tan, P. Layer-number dependent high-frequency vibration modes in few-layer transition metal dichalcogenides induced by interlayer couplings. J. Semicond. 38, 031006 (2017).

    Article  Google Scholar 

  14. Wang, C. et al. Monolayer atomic crystal molecular superlattices. Nature 555, 231–236 (2018).

    Article  Google Scholar 

  15. Gobre, V. V. & Tkatchenko, A. Scaling laws for van der Waals interactions in nanostructured materials. Nat. Commun. 4, 2341 (2013).

    Article  Google Scholar 

  16. Lu, H., Guo, Y., Li, H. & Robertson, J. Modeling of surface gap state passivation and Fermi level de-pinning in solar cells. Appl. Phys. Lett. 114, 222106 (2019).

    Article  Google Scholar 

  17. Bano, A., Krishna, J., Maitra, T. & Gaur, N. K. CrI3-WTe2: a novel two-dimensional heterostructure as multisensor for BrF3 and COCL2 toxic gases. Sci. Rep. 9, 11194 (2019).

    Article  Google Scholar 

  18. Kozlov, S. M., Viñes, F. & Görling, A. Bonding mechanisms of graphene on metal surfaces. J. Phys. Chem. C 116, 7360–7366 (2012).

    Article  Google Scholar 

  19. Liu, W. et al. Benzene adsorbed on metals: concerted effect of covalency and van der Waals bonding. Phys. Rev. B 86, 245405 (2012).

    Article  Google Scholar 

  20. Huang, J. et al. Chemisorption of NO2 to MoS2 nanostructures and its effects for MoS2 sensors. ChemNanoMat 5, 1123–1130 (2019).

    Article  Google Scholar 

  21. Qi, L., Wang, Y., Shen, L. & Wu, Y. Chemisorption-induced n-doping of MoS2 by oxygen. Appl. Phys. Lett. 108, 063103 (2016).

    Article  Google Scholar 

  22. Wang, J. et al. Transferred metal gate to 2D semiconductors for sub-1 V operation and near ideal subthreshold slope. Sci. Adv. 7, eabf8744 (2021).

    Article  Google Scholar 

  23. Si, M. et al. Steep-slope hysteresis-free negative capacitance MoS2 transistors. Nat. Nanotechnol. 13, 24–28 (2018).

    Article  Google Scholar 

  24. Liu, X. et al. MoS2 negative-capacitance field-effect transistors with subthreshold swing below the physics limit. Adv. Mater. 30, 1800932 (2018).

    Article  Google Scholar 

  25. Yang, Y. et al. Probing nanoscale oxygen ion motion in memristive systems. Nat. Commun. 8, 15173 (2017).

    Article  Google Scholar 

  26. Zafar, S., Jagannathan, H., Edge, L. F. & Gupta, D. Measurement of oxygen diffusion in nanometer scale HfO2 gate dielectric films. Appl. Phys. Lett. 98, 152903 (2011).

    Article  Google Scholar 

  27. Shluger, A. in Handbook of Materials Modeling: Applications: Current and Emerging Materials (eds Andreoni, W. & Yip, S.) 1013–1034 (Springer International Publishing, 2020).

  28. Jech, M., El-Sayed, A.-M., Tyaginov, S., Shluger, A. L. & Grasser, T. Ab initio treatment of silicon-hydrogen bond rupture at Si/SiO2 interfaces. Phys. Rev. B 100, 195302 (2019).

    Article  Google Scholar 

  29. Azcatl, A. et al. HfO2 on UV–O3 exposed transition metal dichalcogenides: interfacial reactions study. 2D Mater. 2, 014004 (2015).

    Article  Google Scholar 

  30. Huang, T.-X. et al. Probing the edge-related properties of atomically thin MoS2 at nanoscale. Nat. Commun. 10, 5544 (2019).

    Article  Google Scholar 

  31. Chen, Y.-T., Zhao, H., Yum, J. H., Wang, Y. & Lee, J. C. Metal-oxide-semiconductor field-effect-transistors on indium phosphide using HfO2 and silicon passivation layer with equivalent oxide thickness of 18 Å. Appl. Phys. Lett. 94, 213505 (2009).

    Article  Google Scholar 

  32. Wang, B. et al. High-κ gate dielectrics for emerging flexible and stretchable electronics. Chem. Rev. 118, 5690–5754 (2018).

    Article  Google Scholar 

  33. Mleczko, M. J. et al. HfSe2 and ZrSe2: two-dimensional semiconductors with native high-κ oxides. Sci. Adv. 3, e1700481 (2017).

    Article  Google Scholar 

  34. Lai, S. et al. HfO2/HfS2 hybrid heterostructure fabricated via controllable chemical conversion of two-dimensional HfS2. Nanoscale 10, 18758–18766 (2018).

    Article  Google Scholar 

  35. Peimyoo, N. et al. Laser-writable high-k dielectric for van der Waals nanoelectronics. Sci. Adv. 5, eaau0906 (2019).

    Article  Google Scholar 

  36. Aktulga, H. M., Fogarty, J. C., Pandit, S. A. & Grama, A. Y. Parallel reactive molecular dynamics: numerical methods and algorithmic techniques. Parallel Comput. 38, 245–259 (2012).

    Article  Google Scholar 

  37. Giannozzi, P. et al. Advanced capabilities for materials modelling with QUANTUM ESPRESSO. J. Phys. Condens. Matter 29, 465901 (2017).

    Article  Google Scholar 

  38. Zheng, X. et al. Spatial defects nanoengineering for bipolar conductivity in MoS2. Nat. Commun. 11, 3463 (2020).

    Article  Google Scholar 

  39. Kim, H. et al. Ultrathin monolithic HfO2 formed by Hf-seeded atomic layer deposition on MoS2: film characteristics and its transistor application. Thin Solid Films 673, 112–118 (2019).

    Article  Google Scholar 

  40. Guo, Y. et al. Charge trapping at the MoS2-SiO2 interface and its effects on the characteristics of MoS2 metal-oxide-semiconductor field effect transistors. Appl. Phys. Lett. 106, 103109 (2015).

    Article  Google Scholar 

  41. Geiger, M. et al. Effect of the degree of the gate-dielectric surface roughness on the performance of bottom-gate organic thin-film transistors. Adv. Mater. Interfaces 7, 1902145 (2020).

    Article  Google Scholar 

  42. Cui, X. et al. Low-temperature ohmic contact to monolayer MoS2 by van der Waals bonded Co/h-BN electrodes. Nano Lett. 17, 4781–4786 (2017).

    Article  Google Scholar 

  43. Cao, Z., Lin, F., Gong, G., Chen, H. & Martin, J. Low Schottky barrier contacts to 2H-MoS2 by Sn electrodes. Appl. Phys. Lett. 116, 022101 (2020).

    Article  Google Scholar 

  44. Liu, X. et al. Enhancing photoresponsivity of self-aligned MoS2 field-effect transistors by piezo-phototronic effect from GaN nanowires. ACS Nano 10, 7451–7457 (2016).

    Article  Google Scholar 

  45. Huang, X. et al. Ultrathin multibridge channel transistor enabled by van der Waals assembly. Adv. Mater. 33, 2102201 (2021).

    Article  Google Scholar 

  46. Chamlagain, B. et al. Thermally oxidized 2D TaS2 as a high-κ gate dielectric for MoS2 field-effect transistors. 2D Mater. 4, 031002 (2017).

    Article  Google Scholar 

  47. Wang, H. et al. Integrated circuits based on bilayer MoS2 transistors. Nano Lett. 12, 4674–4680 (2012).

    Article  Google Scholar 

  48. Zou, X. et al. Dielectric engineering of a boron nitride/hafnium oxide heterostructure for high-performance 2D field effect transistors. Adv. Mater. 28, 2062–2069 (2016).

    Article  Google Scholar 

  49. Kim, S. et al. High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals. Nat. Commun. 3, 1011 (2012).

    Article  Google Scholar 

  50. Lin, J. et al. High-current MoS2 transistors with non-planar gate configuration. Sci. Bull. 66, 777–782 (2021).

    Article  Google Scholar 

  51. Tang, A. et al. Toward low-temperature solid-source synthesis of monolayer MoS2. ACS Appl. Mater. Interfaces 13, 41866–41874 (2021).

    Article  Google Scholar 

  52. Wang, X., Sun, Y. & Liu, K. Chemical and structural stability of 2D layered materials. 2D Mater. 6, 042001 (2019).

    Article  Google Scholar 

  53. Wang, J. et al. High mobility MoS2 transistor with low Schottky barrier contact by using atomic thick h-BN as a tunneling layer. Adv. Mater. 28, 8302–8308 (2016).

    Article  Google Scholar 

  54. Liu, J., Zhou, Y. & Zhu, W. Dielectric-induced interface states in black phosphorus and tungsten diselenide capacitors. Appl. Phys. Lett. 113, 013103 (2018).

    Article  Google Scholar 

  55. Sheng, J., Chen, H., Li, B. & Chang, L. Temperature dependence of the dielectric constant of acrylic dielectric elastomer. Appl. Phys. A 110, 511–515 (2012).

    Article  Google Scholar 

  56. Illarionov, Y. Y. et al. Long-term stability and reliability of black phosphorus field-effect transistors. ACS Nano 10, 9543–9549 (2016).

    Article  Google Scholar 

  57. Liu, X. et al. Transparent megahertz circuits from solution-processed composite thin films. Nanoscale 8, 7978–7983 (2016).

    Article  Google Scholar 

  58. Wan, D. et al. High voltage gain WSe2 complementary compact inverter with buried gate for local doping. IEEE Electron Device Lett. 41, 944–947 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of Ministry of Science and Technology (no. 2018YFA0703700), China National Funds for Distinguished Young Scientists (grant 61925403), China National Funds for Outstanding Young Scientists (grant 62122024), the National Natural Science Foundation of China (grant nos. 62274060, 12174094, 51872084 and 51991341) and Natural Science Foundation of Hunan Province (grant nos. 2021JJ20028 and 2020JJ1002), and partly by the Key Research and Development Plan of Hunan Province (grant nos. 2022WK2001 and 2018GK2064).

Author information

Authors and Affiliations

Authors

Contributions

P.L. and C.L. contributed equally to this work. L.L. and X.L. conceived and designed the experiments. P.L. fabricated the VGG transistors, measured the electrical performance and prepared the manuscript. C.L. and J.L. designed the schematic and prepared the TEM samples. X.D. completed the current–voltage measurements. W.Q. finished the Raman measurements and MD simulations. W.Z. completed the TEM analysis using the protocols provided by C.M. Y.Lv. provided the DFT analysis. X.Z., Y.Liu., F.S. and J.H. presented the suggestions for improving the quality of this work and revised the manuscript. All the authors examined and commented on the manuscript.

Corresponding authors

Correspondence to Wenjing Qin, Lei Liao, Jun He or Xingqiang Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Electronics thanks Theresia Knobloch and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–18.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, P., Liu, C., Lin, J. et al. Molybdenum disulfide transistors with enlarged van der Waals gaps at their dielectric interface via oxygen accumulation. Nat Electron 5, 849–858 (2022). https://doi.org/10.1038/s41928-022-00877-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41928-022-00877-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing