Abstract
Power semiconductor devices are key to delivering high-efficiency energy conversion in power electronics systems, which is critical in efforts to reduce energy loss, cut carbon dioxide emissions and create more sustainable technology. Although the use of wide or ultrawide-bandgap materials will be required to develop improved power devices, multidimensional architectures can also improve performance, regardless of the underlying material technology. In particular, multidimensional device architectures—such as superjunction, multi-channel and multi-gate technologies—can enable advances in the speed, efficiency and form factor of power electronics systems. Here we review the development of multidimensional device architectures for efficient power electronics. We explore the rationale for using multidimensional architectures and the different architectures available. We also consider the performance limits, scaling and material figure of merits of the architectures, and identify key technological challenges that need to be addressed to realize the full potential of the approach.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout





References
Baliga, B. J. Fundamentals of Power Semiconductor Devices (Springer Science & Business Media, 2010).
She, X., Huang, A. Q., Lucía, Ó. & Ozpineci, B. Review of silicon carbide power devices and their applications. IEEE Trans. Ind. Electron. 64, 8193–8205 (2017).
Kimoto, T. Material science and device physics in SiC technology for high-voltage power devices. Jpn J. Appl. Phys. 54, 040103 (2015).
Jones, E. A., Wang, F. F. & Costinett, D. Review of commercial GaN power devices and GaN-based converter design challenges. IEEE J. Emerg. Sel. Top. Power Electron. 4, 707–719 (2016).
Amano, H. et al. The 2018 GaN power electronics roadmap. J. Phys. D 51, 163001 (2018).
Chen, K. J. et al. GaN-on-Si power technology: devices and applications. IEEE Trans. Electron Devices 64, 779–795 (2017).
Tsao, J. Y. et al. Ultrawide-bandgap semiconductors: research opportunities and challenges. Adv. Electron. Mater. 4, 1600501 (2018).
Green, A. J. et al. β-Gallium oxide power electronics. APL Mater. 10, 029201 (2022).
Kaplar, R. J. et al. Review—ultra-wide-bandgap algan power electronic devices. ECS J. Solid State Sci. Technol. 6, Q3061 (2016).
Donato, N., Rouger, N., Pernot, J., Longobardi, G. & Udrea, F. Diamond power devices: state of the art, modelling, figures of merit and future perspective. J. Phys. D 53, 093001 (2020).
Udrea, F., Deboy, G. & Fujihira, T. Superjunction power devices, history, development, and future prospects. IEEE Trans. Electron Devices 64, 720–734 (2017).
Baliga, B. J. Semiconductors for high‐voltage, vertical channel field‐effect transistors. J. Appl. Phys. 53, 1759–1764 (1982).
Cooper, J. A. & Morisette, D. T. Performance limits of vertical unipolar power devices in GaN and 4H-SiC. IEEE Electron Device Lett. 41, 892–895 (2020).
Hudgins, J. L., Simin, G. S., Santi, E. & Khan, M. A. An assessment of wide bandgap semiconductors for power devices. IEEE Trans. Power Electron. 18, 907–914 (2003).
Liu, G., Tuttle, B. R. & Dhar, S. Silicon carbide: a unique platform for metal-oxide-semiconductor physics. Appl. Phys. Rev. 2, 021307 (2015).
Ji, D. et al. Demonstrating >1.4 kV OG-FET performance with a novel double field-plated geometry and the successful scaling of large-area devices. In 2017 IEEE International Electron Devices Meeting 9.4.1–9.4.4 (IEEE, 2017); https://doi.org/10.1109/IEDM.2017.8268359
Tanaka, R., Takashima, S., Ueno, K., Matsuyama, H. & Edo, M. Demonstration of 1200 V / 1.4 mΩ cm2 vertical GaN planar MOSFET fabricated by an all ion implantation process. Jpn J. Appl. Phys. 59, SGGD02 (2020).
Nakamura, T. et al. High performance SiC trench devices with ultra-low Ron. In 2011 International Electron Devices Meeting 26.5.1–26.5.3 (IEEE, 2011); https://doi.org/10.1109/IEDM.2011.6131619
Zhang, Y. & Palacios, T. (Ultra)wide-bandgap vertical power FinFETs. IEEE Trans. Electron Devices 67, 3960–3971 (2020).
Kaminski, N. & Hilt, O. SiC and GaN devices–wide bandgap is not all the same. IET Circuits Devices Syst. 8, 227–236 (2014).
Saito, W., Omura, I., Ogura, T. & Ohashi, H. Theoretical limit estimation of lateral wide band-gap semiconductor power-switching device. Solid State Electron. 48, 1555–1562 (2004).
Ma, Y. et al. Tri-gate GaN junction HEMT. Appl. Phys. Lett. 117, 143506 (2020).
Zhang, Y. et al. Electrothermal simulation and thermal performance study of GaN vertical and lateral power transistors. IEEE Trans. Electron Devices 60, 2224–2230 (2013).
Williams, R. K. et al. The trench power MOSFET: Part I—history, technology, and prospects. IEEE Trans. Electron Devices 64, 674–691 (2017).
Palmour, J. W. et al. Silicon carbide power MOSFETs: breakthrough performance from 900 V up to 15 kV. In 2014 IEEE 26th International Symposium on Power Semiconductor Devices and IC’s 79–82 (IEEE, 2014); https://doi.org/10.1109/ISPSD.2014.6855980
Oka, T. Recent development of vertical GaN power devices. Jpn J. Appl. Phys. 58, SB0805 (2019).
Li, W. et al. Single and multi-fin normally-off Ga2O3 vertical transistors with a breakdown voltage over 2.6 kV. In 2019 IEEE International Electron Devices Meeting 12.4.1–12.4.4 (IEEE, 2019); https://doi.org/10.1109/IEDM19573.2019.8993526
Bhattacharyya, A. et al. Multi-kV class β-Ga2O3 MESFETs with a lateral figure of merit up to 355 MW/cm2. IEEE Electron Device Lett. 42, 1272–1275 (2021).
Wu, Y. et al. More than 3000 V reverse blocking Schottky-drain AlGaN-channel HEMTs with >230 MW/cm2 power figure-of-merit. IEEE Electron Device Lett. 40, 1724–1727 (2019).
Abid, I. et al. Remarkable breakdown voltage on AlN/AlGaN/AlN double heterostructure. In 2020 32nd International Symposium on Power Semiconductor Devices and ICs 310–312 (IEEE, 2020); https://doi.org/10.1109/ISPSD46842.2020.9170170
Kitabayashi, Y. et al. Normally-off C–H diamond MOSFETs with partial C–O channel achieving 2-kV breakdown voltage. IEEE Electron Device Lett. 38, 363–366 (2017).
Iwasaki, T. et al. 600 V diamond junction field-effect transistors operated at 200 °C. IEEE Electron Device Lett. 35, 241–243 (2014).
Masuda, T., Saito, Y., Kumazawa, T., Hatayama, T. & Harada, S. 0.63 mΩ·cm2 / 1170 V 4H-SiC super junction V-groove trench MOSFET. In 2018 IEEE International Electron Devices Meeting 8.1.1–8.1.4 (IEEE, 2018); https://doi.org/10.1109/IEDM.2018.8614610
Baba, M. et al. Ultra-low specific on-resistance achieved in 3.3 kV-class SiC superjunction MOSFET. In 2021 33rd International Symposium on Power Semiconductor Devices and ICs 83–86 (IEEE, 2021); https://doi.org/10.23919/ISPSD50666.2021.9452273
Kosugi, R. et al. Breaking the theoretical limit of 6.5 kV-class 4H-SiC super-junction (SJ) MOSFETs by trench-filling epitaxial growth. In 2019 31st International Symposium on Power Semiconductor Devices and ICs 39–42 (IEEE, 2019); https://doi.org/10.1109/ISPSD.2019.8757632
Nela, L. et al. Multi-channel nanowire devices for efficient power conversion. Nat. Electron. 4, 284–290 (2021).
Xiao, M. et al. Multi-channel monolithic-cascode HEMT (MC2-HEMT): a new GaN power switch up to 10 kV. In 2021 IEEE International Electron Devices Meeting 5.5.1–5.5.4 (IEEE, 2021); https://doi.org/10.1109/IEDM19574.2021.9720714
Zhang, Y. et al. GaN FinFETs and trigate devices for power and RF applications: review and perspective. Semicond. Sci. Technol. 36, 054001 (2021).
Kato, T. et al. Enhanced performance of 50 nm ultra-narrow-body silicon carbide MOSFETs based on FinFET effect. In 2020 32nd International Symposium on Power Semiconductor Devices and ICs 62–65 (IEEE, 2020); https://doi.org/10.1109/ISPSD46842.2020.9170182
Udrea, F. et al. The FinFET effect in silicon carbide MOSFETs. In 2021 33rd International Symposium on Power Semiconductor Devices and ICs 75–78 (IEEE, 2021); https://doi.org/10.23919/ISPSD50666.2021.9452282
Ramamurthy, R. P., Islam, N., Sampath, M., Morisette, D. T. & Cooper, J. A. The tri-Gate MOSFET: a new vertical power transistor in 4H-SiC. IEEE Electron Device Lett. 42, 90–93 (2021).
Udrea, F. et al. Experimental demonstration, challenges, and prospects of the vertical SiC FinFET. In 2022 34rd International Symposium on Power Semiconductor Devices and ICs 253–256 (IEEE, 2022); https://doi.org/10.1109/ISPSD49238.2022.9813617
Ma, J. et al. 1200 V multi-channel power devices with 2.8 Ω·mm on-resistance. In 2019 IEEE International Electron Devices Meeting 4.1.1–4.1.4 (IEEE, 2019); https://doi.org/10.1109/IEDM19573.2019.8993536
Liu, J. et al. 1.2-kV vertical GaN Fin-JFETs: high-temperature characteristics and avalanche capability. IEEE Trans. Electron Devices 68, 2025–2032 (2021).
Disney, D. & Dolny, G. JFET depletion in superjunction devices. In 2008 20th International Symposium on Power Semiconductor Devices and IC’s 157–160 (IEEE, 2008); https://doi.org/10.1109/ISPSD.2008.4538922
Kang, H. & Udrea, F. True material limit of power devices—applied to 2-D superjunction MOSFET. IEEE Trans. Electron Devices 65, 1432–1439 (2018).
Kang, H. & Udrea, F. Theory of 3-D superjunction MOSFET. IEEE Trans. Electron Devices 66, 5254–5259 (2019).
Deboy, G. et al. A new generation of high voltage MOSFETs breaks the limit line of silicon. In 1998 IEEE International Electron Devices Meeting 683–685 (IEEE, 1998); https://doi.org/10.1109/IEDM.1998.746448
Lorenz, L., Deboy, G., Knapp, A. & Marz, M. COOLMOSTM—a new milestone in high voltage power MOS. In 1999 11th International Symposium on Power Semiconductor Devices and IC’s 3–10 (IEEE, 1999); https://doi.org/10.1109/ISPSD.1999.764028
Hattori et al. Design of a 200V super junction MOSFET with n-buffer regions and its fabrication by trench filling. In 2004 16th International Symposium on Power Semiconductor Devices and IC’s 189–192 (IEEE, 2004); https://doi.org/10.1109/WCT.2004.239903
Zhong, X., Wang, B. & Sheng, K. Design and experimental demonstration of 1.35 kV SiC super junction Schottky diode. In 2016 28th International Symposium on Power Semiconductor Devices and IC’s 231–234 (IEEE, 2016); https://doi.org/10.1109/ISPSD.2016.7520820
Wang, H., Wang, C., Wang, B., Ren, N. & Sheng, K. 4H-SiC super-junction JFET: design and experimental demonstration. IEEE Electron Device Lett. 41, 445–448 (2020).
Fujihira, T. Theory of semiconductor superjunction devices. Jpn J. Appl. Phys. 36, 6254 (1997).
Kang, H., Lee, J., Lee, K. & Choi, Y. Trench angle: a key design factor for a deep trench superjunction MOSFET. Semicond. Sci. Technol. 30, 125008 (2015).
Chen, X.-B. & Sin, J. K. O. Optimization of the specific on-resistance of the COOLMOSTM. IEEE Trans. Electron Devices 48, 344–348 (2001).
Saito, W. Comparison of theoretical limits between superjunction and field plate structures. In 2013 25th International Symposium on Power Semiconductor Devices and IC’s 241–244 (IEEE, 2013); https://doi.org/10.1109/ISPSD.2013.6694461
Saito, W. Theoretical limits of superjunction considering with charge imbalance margin. In 2015 IEEE 27th International Symposium on Power Semiconductor Devices and IC’s 125–128 (IEEE, 2015); https://doi.org/10.1109/ISPSD.2015.7123405
Kang, H. & Udrea, F. Material limit of power devices—applied to asymmetric 2-D superjunction MOSFET. IEEE Trans. Electron Devices 65, 3326–3332 (2018).
Harada, S. et al. First demonstration of dynamic characteristics for SiC superjunction MOSFET realized using multi-epitaxial growth method. In 2018 IEEE International Electron Devices Meeting 8.2.1–8.2.4 (IEEE, 2018); https://doi.org/10.1109/IEDM.2018.8614670
Udrea, F., Popescu, A. & Milne, W. I. 3D RESURF double-gate MOSFET: a revolutionary power device concept. Electron. Lett. 34, 808–809 (1998).
Udrea, F. et al. Ultra-high voltage device termination using the 3D RESURF (super-junction) concept—experimental demonstration at 6.5 kV. In 2001 13th International Symposium on Power Semiconductor Devices and IC’s 129–132 (IEEE, 2001); https://doi.org/10.1109/ISPSD.2001.934573
Ishida, H. et al. GaN-based natural super junction diodes with multi-channel structures. In 2008 IEEE International Electron Devices Meeting 1–4 (IEEE, 2008); https://doi.org/10.1109/IEDM.2008.4796636
Cao, Y. et al. MBE growth of high conductivity single and multiple AlN/GaN heterojunctions. J. Cryst. Growth 323, 529–533 (2011).
Xiao, M. et al. 3.3 kV multi-channel AlGaN/GaN Schottky barrier diodes with p-GaN termination. IEEE Electron Device Lett. 41, 1177–1180 (2020).
Lingaparthi, R. et al. Source of two-dimensional electron gas in unintentionally doped AlGaN/GaN multichannel high-electron-mobility transistor heterostructures. Appl. Phys. Lett. 118, 122105 (2021).
Heikman, S., Keller, S., Green, D. S., DenBaars, S. P. & Mishra, U. K. High conductivity modulation doped AlGaN/GaN multiple channel heterostructures. J. Appl. Phys. 94, 5321–5325 (2003).
Nela, L., Xiao, M., Zhang, Y. & Matioli, E. A perspective on multi-channel technology for the next-generation of GaN power devices. Appl. Phys. Lett. 120, 190501 (2022).
Xiao, M., Ma, Y., Liu, K., Cheng, K. & Zhang, Y. 10 kV, 39 mΩ·cm2 multi-channel AlGaN/GaN Schottky barrier diodes. IEEE Electron Device Lett. 42, 808–811 (2021).
Ma, J., Kampitsis, G., Xiang, P., Cheng, K. & Matioli, E. Multi-channel tri-gate GaN power Schottky diodes with low on-resistance. IEEE Electron Device Lett. 40, 275–278 (2019).
Xiao, M. et al. 5 kV multi-channel AlGaN/GaN power Schottky barrier diodes with junction-fin-anode. In 2020 IEEE International Electron Devices Meeting 5.4.1–5.4.4 (IEEE, 2020); https://doi.org/10.1109/IEDM13553.2020.9372025
Nakajima, A., Sumida, Y., Dhyani, M. H., Kawai, H. & Narayanan, E. M. S. GaN-based super heterojunction field effect transistors using the polarization junction concept. IEEE Electron Device Lett. 32, 542–544 (2011).
Howell, R. S. et al. The super-lattice castellated field effect transistor (SLCFET): a novel high performance transistor topology ideal for RF switching. In 2014 IEEE International Electron Devices Meeting 11.5.1–11.5.4 (IEEE, 2014); https://doi.org/10.1109/IEDM.2014.7047033
Raj, A. et al. GaN/AlGaN superlattice based E-mode p-channel MES-FinFET with regrown contacts and >50 mA/mm on-current. In 2021 IEEE International Electron Devices Meeting 5.4.1–5.4.4 (IEEE, 2021); https://doi.org/10.1109/IEDM19574.2021.9720496
Hisamoto, D. et al. FinFET-a self-aligned double-gate MOSFET scalable to 20 nm. IEEE Trans. Electron Devices 47, 2320–2325 (2000).
Bohr, M. T. & Young, I. A. CMOS scaling trends and beyond. IEEE Micro 37, 20–29 (2017).
Razavieh, A., Zeitzoff, P. & Nowak, E. J. Challenges and limitations of CMOS scaling for FinFET and beyond architectures. IEEE Trans. Nanotechnol. 18, 999–1004 (2019).
Veliadis, V. 1200 V SiC vertical-channel-JFETs and cascode switches. Phys. Status Solidi A 206, 2346–2362 (2009).
Liu, J. et al. 1.2 kV vertical GaN Fin JFETs with robust avalanche and fast switching capabilities. In 2020 IEEE International Electron Devices Meeting 23.2.1–23.2.4 (IEEE, 2020); https://doi.org/10.1109/IEDM13553.2020.9372048
Xiao, M., Gao, X., Palacios, T. & Zhang, Y. Leakage and breakdown mechanisms of GaN vertical power FinFETs. Appl. Phys. Lett. 114, 163503 (2019).
Zhang, Y. et al. 1200 V GaN vertical fin power field-effect transistors. In 2017 IEEE International Electron Devices Meeting 9.2.1–9.2.4 (IEEE, 2017); https://doi.org/10.1109/IEDM.2017.8268357
Zhang, Y. et al. Large-area 1.2-kV GaN vertical power FinFETs with a record switching figure of merit. IEEE Electron Device Lett. 40, 75–78 (2019).
Balestra, F., Cristoloveanu, S., Benachir, M., Brini, J. & Elewa, T. Double-gate silicon-on-insulator transistor with volume inversion: a new device with greatly enhanced performance. IEEE Electron Device Lett. 8, 410–412 (1987).
Alsharef, M. A., Granzner, R. & Schwierz, F. Theoretical Investigation of trigate AlGaN/GaN HEMTs. IEEE Trans. Electron Devices 60, 3335–3341 (2013).
Tamura, T., Kotani, J., Kasai, S. & Hashizume, T. Nearly temperature-independent saturation drain current in a multi-mesa-channel AlGaN/GaN high electron mobility transistor. Appl. Phys. Express 1, 023001 (2008).
Lu, B., Matioli, E. & Palacios, T. Tri-gate normally-off GaN power MISFET. IEEE Electron Device Lett. 33, 360–362 (2012).
Wu, C.-H. et al. Normally-off tri-gate GaN MIS-HEMTs with 0.76 mΩ·cm 2 specific on-resistance for power device applications. IEEE Trans. Electron Devices 66, 3441–3446 (2019).
Ma, Y., Xiao, M., Du, Z., Wang, H. & Zhang, Y. Tri-gate GaN junction HEMTs: physics and performance space. IEEE Trans. Electron Devices 68, 4854–4861 (2021).
Huang, A. Q. Power semiconductor devices for smart grid and renewable energy systems. Proc. IEEE 105, 2019–2047 (2017).
Xiong, Y., Sun, S., Jia, H., Shea, P. & John Shen, Z. New physical insights on power MOSFET switching losses. IEEE Trans. Power Electron. 24, 525–531 (2009).
Li, X. et al. A SiC power MOSFET loss model suitable for high-frequency applications. IEEE Trans. Ind. Electron. 64, 8268–8276 (2017).
Li, A. et al. Lattice-matched AlInN/GaN multi-channel heterostructure and HEMTs with low on-resistance. Appl. Phys. Lett. 119, 122104 (2021).
Zhou, X., Howell-Clark, J. R., Guo, Z., Hitchcock, C. W. & Chow, T. P. Performance limits of vertical GaN of conventional doped pn and natural polarization superjunction devices. Appl. Phys. Lett. 115, 112104 (2019).
Huang, H., Cheng, J., Yi, B., Zhang, W. & Ng, W. T. A unified model for vertical doped and polarized superjunction GaN devices. Appl. Phys. Lett. 116, 102103 (2020).
Kang, H. & Udrea, F. Static and dynamic figures of merits (FOM) for superjunction MOSFETs. In 2019 31st International Symposium on Power Semiconductor Devices and IC’s 319–322 (IEEE, 2019); https://doi.org/10.1109/ISPSD.2019.8757689
Chen, Y.-K., Sivananthan, A. & Chang, T.-H. Emerging high power mm-wave RF transistors. In 2020 IEEE/MTT-S International Microwave Symposium 562–565 (IEEE, 2020); https://doi.org/10.1109/IMS30576.2020.9224064
Chen, B.-Y., Chen, K.-M., Chiu, C.-S., Huang, G.-W. & Chang, E. Y. High-frequency performances of superjunction laterally diffused metal–oxide–semiconductor transistors for RF power applications. Jpn J. Appl. Phys. 55, 04ER09 (2016).
Chang, J. et al. The super-lattice castellated field-effect transistor: a high-power, high-performance RF amplifier. IEEE Electron Device Lett. 40, 1048–1051 (2019).
Afroz, S. et al. Diamond superjunction (SJ) process development: super-lattice power amplifier with diamond enhanced superjunction (SPADES). In 2019 IEEE BiCMOS and Compound Semiconductor Integrated Circuits and Technology Symposium 1–4 (IEEE, 2019); https://doi.org/10.1109/BCICTS45179.2019.8972725
Joglekar, S., Radhakrishna, U., Piedra, D., Antoniadis, D. & Palacios, T. Large signal linearity enhancement of AlGaN/GaN high electron mobility transistors by device-level Vt engineering for transconductance compensation. In 2017 IEEE International Electron Devices Meeting 25.3.1–25.3.4 (IEEE, 2017); https://doi.org/10.1109/IEDM.2017.8268457
Choi, W. et al. Intrinsically linear transistor for millimeter-wave low noise amplifiers. Nano Lett. 20, 2812–2820 (2020).
Middleton, C. et al. Thermal transport in superlattice castellated field effect transistors. IEEE Electron Device Lett. 40, 1374–1377 (2019).
Cao, Y., Pomeroy, J. W., Uren, M. J., Yang, F. & Kuball, M. Electric field mapping of wide-bandgap semiconductor devices at a submicrometre resolution. Nat. Electron. 4, 478–485 (2021).
Zulauf, G. D., Roig-Guitart, J., Plummer, J. D. & Rivas-Davila, J. M. C. O. S. S. Measurements for superjunction MOSFETs: limitations and opportunities. IEEE Trans. Electron Devices 66, 578–584 (2019).
Wang, H., Xiao, M., Sheng, K., Palacios, T. & Zhang, Y. Switching performance analysis of vertical GaN FinFETs: impact of interfin designs. IEEE J. Emerg. Sel. Top. Power Electron. 9, 2235–2246 (2021).
Zhang, R. et al. Breakthrough short circuit robustness demonstrated in vertical GaN Fin JFET. IEEE Trans. Power Electron. 37, 6253–6258 (2022).
Zhang, R. et al. Robust through-fin avalanche in vertical GaN Fin-JFET with soft failure mode. IEEE Electron Device Lett. 43, 366–369 (2022).
Okada, M. et al. Superior short-circuit performance of SiC superjunction MOSFET. In 2020 32nd International Symposium on Power Semiconductor Devices and IC’s 70–73 (IEEE, 2020); https://doi.org/10.1109/ISPSD46842.2020.9170126
Fabris, E. et al. Trapping and detrapping mechanisms in β-Ga2O3 vertical FinFETs investigated by electro-optical measurements. IEEE Trans. Electron Devices 67, 3954–3959 (2020).
Antoniou, M., Udrea, F. & Bauer, F. Robustness of superjunction structures against cosmic ray induced breakdown. Solid State Electron. 54, 385–391 (2010).
Liu, J. et al. Tuning avalanche path in vertical GaN JFETs by gate driver design. IEEE Trans. Power Electron. 37, 5433–5443 (2022).
Alexandru, M. et al. SiC integrated circuit control electronics for high-temperature operation. IEEE Trans. Ind. Electron. 62, 3182–3191 (2015).
Zheng, Z. et al. Gallium nitride-based complementary logic integrated circuits. Nat. Electron. 4, 595–603 (2021).
Bader, S. J. et al. Prospects for wide bandgap and ultrawide bandgap CMOS Devices. IEEE Trans. Electron Devices 67, 4010–4020 (2020).
Then, H. W. et al. Advanced scaling of enhancement mode high-K gallium nitride-on-300mm-Si(111) transistor and 3D layer transfer GaN–silicon FinFET CMOS integration. In 2021 IEEE International Electron Devices Meeting 11.1.1–11.1.4 (IEEE, 2021); https://doi.org/10.1109/IEDM19574.2021.9720710
Acknowledgements
Y.Z. acknowledges support from the National Science Foundation (grants ESSC-2036740 and ESSC-2045001). F.U. acknowledges support from the Engineering and Physical Science Research Council (grant EP/W007614/1). H.W. acknowledges support from the National Science Foundation (grant ESSC-2036915). We thank D. Boroyevich and K. Ngo at Virginia Tech for valuable feedback on the manuscript. We thank the support by M. Xiao for designing Figs. 1, 4 and 5, X. Yan for designing Fig. 3, and H. Wang for designing Fig. 1.
Author information
Authors and Affiliations
Contributions
Y.Z., F.U. and H.W. conceived the concepts and perspectives in this article together and co-wrote the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Electronics thanks the anonymous reviewers for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Zhang, Y., Udrea, F. & Wang, H. Multidimensional device architectures for efficient power electronics. Nat Electron 5, 723–734 (2022). https://doi.org/10.1038/s41928-022-00860-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41928-022-00860-5