Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Control of spin current and antiferromagnetic moments via topological surface state


Antiferromagnetic materials, which have ordered but alternating magnetic moments, exhibit fast spin dynamics and produce negligible stray fields, and could be used to build high-density, high-speed memory devices with low power consumption. However, the efficient electrical detection and manipulation of antiferromagnetic moments is challenging. Here we show that the spin current and antiferromagnetic moments in the topological insulator/antiferromagnetic insulator bilayer (Bi,Sb)2Te3/α-Fe2O3 can be controlled via topological surface states. In particular, the orientation of the antiferromagnetic moments in α-Fe2O3 can modulate the spin current reflection at the bilayer interface. In turn, the spin current can control the moment rotation in the antiferromagnetic insulator by means of a giant spin–orbit torque generated by the topological surface state. The required threshold switching current density is 3.5 × 106 A cm−2 at room temperature, which is one order of magnitude smaller than that required in heavy-metal/antiferromagnetic insulator systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of TSS-mediated mutual control of spin current and antiferromagnetic moments.
Fig. 2: Structure characterizations and antiferromagnet control of spin current in (Bi,Sb)2Te3 (7 QL)/α-Fe2O3 (15 nm) bilayers and corresponding MR.
Fig. 3: Spin current control of antiferromagnetic moments in (Bi0.25Sb0.75)2Te3 (7 QL)/α-Fe2O3 (15 nm) bilayers.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author on reasonable request. Source data are provided with this paper.


  1. Jungwirth, T., Marti, X., Wadley, P. & Wunderlich, J. Antiferromagnetic spintronics. Nat. Nanotechnnol. 11, 231–241 (2016).

    Article  Google Scholar 

  2. Park, B. G. et al. A spin-valve-like magnetoresistance of an antiferromagnet-based tunnel junction. Nat. Mater. 10, 347–351 (2011).

    Article  Google Scholar 

  3. Wadley, P. et al. Electrical switching of an antiferromagnet. Science 351, 587–590 (2016).

    Article  Google Scholar 

  4. Wang, Y. et al. Room-temperature perpendicular exchange coupling and tunneling anisotropic magnetoresistance in an antiferromagnet-based tunnel junction. Phys. Rev. Lett. 109, 137201 (2012).

    Article  Google Scholar 

  5. Chen, X. et al. Electric field control of Néel spin–orbit torque in an antiferromagnet. Nat. Mater. 18, 931–935 (2019).

    Article  Google Scholar 

  6. Tsai, H. et al. Electrical manipulation of a topological antiferromagnetic state. Nature 580, 608–613 (2020).

    Article  Google Scholar 

  7. Otrokov, M. M. et al. Prediction and observation of an antiferromagnetic topological insulator. Nature 576, 416–422 (2019).

    Article  Google Scholar 

  8. Gong, Y. et al. Experimental realization of an intrinsic magnetic topological insulator. Chin. Phys. Lett. 36, 076801 (2019).

    Article  Google Scholar 

  9. Chen, X. et al. Observation of the antiferromagnetic spin Hall effect. Nat. Mater. 20, 800–804 (2021).

    Article  Google Scholar 

  10. Tokura, Y., Yasuda, K. & Tsukazaki, A. Magnetic topological insulators. Nat. Rev. Phys. 1, 126–143 (2019).

    Article  Google Scholar 

  11. Chen, Y. et al. Massive Dirac fermion on the surface of a magnetically doped topological insulator. Science 329, 659–662 (2010).

    Article  Google Scholar 

  12. Mellnik, A. R. et al. Spin-transfer torque generated by a topological insulator. Nature 511, 449–451 (2014).

    Article  Google Scholar 

  13. Baibich, M. N. et al. Giant magnetoresistance of (001) Fe/(001) Cr magnetic superlattices. Phys. Rev. Lett. 61, 2472 (1988).

    Article  Google Scholar 

  14. Nakayama, H. et al. Spin Hall magnetoresistance induced by a nonequilibrium proximity effect. Phys. Rev. Lett. 110, 206601 (2013).

    Article  Google Scholar 

  15. Cheng, Y. et al. Anisotropic magnetoresistance and nontrivial spin Hall magnetoresistance in Pt/α-Fe2O3 bilayers. Phys. Rev. B 100, 220408 (2019).

    Article  Google Scholar 

  16. Zhou, Y. et al. A comparative study of spin Hall magnetoresistance in Fe2O3-based systems. J. Appl. Phys. 127, 163904 (2020).

    Article  Google Scholar 

  17. Yasuda, Y. et al. Large unidirectional magnetoresistance in a magnetic topological insulator. Phys. Rev. Lett. 117, 127202 (2016).

    Article  Google Scholar 

  18. Lv, Y. et al. Unidirectional spin-Hall and Rashba–Edelstein magnetoresistance in topological insulator-ferromagnet layer heterostructures. Nat. Commun. 9, 111 (2018).

    Article  Google Scholar 

  19. Slonczewski, J. C. et al. Current-driven excitation of magnetic multilayers. J. Mag. Mag. Mater. 159, L1–L7 (1996).

    Article  Google Scholar 

  20. Fan, Y. et al. Magnetization switching through giant spin–orbit torque in a magnetically doped topological insulator heterostructure. Nat. Mater. 13, 699–704 (2014).

    Article  Google Scholar 

  21. Kondou, K. et al. Fermi-level-dependent charge-to-spin current conversion by Dirac surface states of topological insulators. Nat. Phys. 12, 1027–1031 (2016).

    Article  Google Scholar 

  22. Han, J. et al. Room-temperature spin-orbit torque switching induced by a topological insulator. Phys. Rev. Lett. 119, 077702 (2017).

    Article  Google Scholar 

  23. Mahendra, D. C. et al. Room-temperature high spin-orbit torque due to quantum confinement in sputtered BixSe(1−x) films. Nat. Mater. 17, 800–807 (2018).

    Article  Google Scholar 

  24. Wang, Y. et al. Room temperature magnetization switching in topological insulator-ferromagnet heterostructures by spin-orbit torques. Nat. Commun. 8, 1364 (2017).

    Article  Google Scholar 

  25. Khang, N. H. D., Ueda, Y. & Hai, P. N. A conductive topological insulator with large spin Hall effect for ultralow power spin–orbit torque switching. Nat. Mater. 17, 808–813 (2018).

    Article  Google Scholar 

  26. Li, P. et al. Magnetization switching using topological surface states. Sci. Adv. 5, eaaw3415 (2019).

    Article  Google Scholar 

  27. Han, J. et al. Mutual control of coherent spin waves and magnetic domain walls in a magnonic device. Science 366, 1121–1125 (2019).

    Article  Google Scholar 

  28. Šmejkal, L., Mokrousov, Y., Yan, B. & MacDonald, A. H. Topological antiferromagnetic spintronics. Nat. Phys. 14, 242–251 (2018).

    Article  Google Scholar 

  29. Miron, I. M. et al. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 476, 189–193 (2011).

    Article  Google Scholar 

  30. Liu, L. et al. Spin-torque switching with the giant spin Hall effect of tantalum. Science 336, 555–558 (2012).

    Article  Google Scholar 

  31. Bodnar, S. Y. et al. Writing and reading of antiferromagnetic Mn2Au by Néel spin-orbit torques and large anisotropic magnetoresistance. Nat. Commun. 9, 348 (2018).

    Article  Google Scholar 

  32. Chen, X. et al. Antidamping-torque-induced switching in biaxial antiferromagnetic insulators. Phys. Rev. Lett. 120, 207204 (2018).

    Article  Google Scholar 

  33. Moriyama, T., Oda, K., Ohkochi, T., Kimata, M. & Ono, T. Spin torque control of antiferromagnetic moments in NiO. Sci. Rep. 8, 14167 (2018).

    Article  Google Scholar 

  34. Baldrati, L. et al. Mechanism of Néel order switching in antiferromagnetic thin films revealed by magnetotransport and imaging techniques. Phys. Rev. Lett. 123, 177201 (2019).

    Article  Google Scholar 

  35. Baldrati, L. et al. Efficient spin torques in antiferromagnetic CoO/Pt quantified by comparing field- and current-induced switching. Phys. Rev. Lett. 125, 077201 (2020).

    Article  Google Scholar 

  36. Cheng, Y., Yu, S., Hwang, J. & Yang, F. Electrical switching of tristate antiferromagnetic Néel order in α-Fe2O3 epitaxial films. Phys. Rev. Lett. 124, 027202 (2020).

    Article  Google Scholar 

  37. Zhang, P., Finley, J., Safi, T. & Liu, L. Quantitative study on current-induced effect in an antiferromagnet insulator/Pt bilayer film. Phys. Rev. Lett. 123, 247206 (2019).

    Article  Google Scholar 

  38. Liao, L. et al. Charge-magnon conversion at the topological insulator/antiferromagnetic insulator interface. Phys. Rev. B 102, 115152 (2020).

    Article  Google Scholar 

  39. Hou, D. et al. Tunable sign change of spin Hall magnetoresistance in Pt/NiO/YIG structures. Phys. Rev. Lett. 118, 147202 (2017).

    Article  Google Scholar 

  40. Tang, C. et al. Above 400-K robust perpendicular ferromagnetic phase in a topological insulator. Sci. Adv. 3, e1700307 (2017).

    Article  Google Scholar 

  41. Lang, M. et al. Proximity induced high-temperature magnetic order in topological insulator-ferrimagnetic insulator heterostructure. Nano Lett. 14, 3459–3465 (2014).

    Article  Google Scholar 

  42. Han, J. et al. Birefringence-like spin transport via linearly polarized antiferromagnetic magnons. Nat. Nanotechnol. 15, 563–568 (2020).

    Article  Google Scholar 

Download references


We are grateful to the fruitful discussions with O. V. Gomonay and J. Han. This work is supported by the National Key Research and Development Program of China (MOST) (grant no. 2021YFB3601301), National Natural Science Foundation of China (grant nos. 52225106 and 51871130) and Natural Science Foundation of Beijing Municipality (grant no. JQ20010), as well as support of the Beijing Innovation Center for Future Chip (ICFC), Tsinghua University.

Author information

Authors and Affiliations



C.S. supervised this study. X.C., H.B., Y.J. and X.L. grew the thin films and fabricated the devices. X.C., H.B., Y.Z. and Y.Y. carried out the magnetotransport measurements and proposed the theoretical calculations. A.L. and X.H. performed the microstructure and electronic structure characterizations. L.L., Q.W., W.Z., L.H., X.K., F.P. and J.Y. gave suggestions on the experiments. All the authors discussed the results and prepared the manuscript.

Corresponding author

Correspondence to Cheng Song.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Electronics thanks Samik DuttaGupta and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–9 and Sections 1–9.

Source data

Source Data Fig. 2

Statistical source data for MR.

Source Data Fig. 3

Statistical source data for SOT switching.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Bai, H., Ji, Y. et al. Control of spin current and antiferromagnetic moments via topological surface state. Nat Electron 5, 574–578 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing