Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Electronic materials with nanoscale curved geometries

Abstract

As the dimensions of a material shrink from an extended bulk solid to a nanoscale structure, size and quantum confinement effects become dominant, altering the properties of the material. Materials with nanoscale curved geometries, such as rolled-up nanomembranes and zigzag-shaped nanowires, have recently been found to exhibit a number of intriguing electronic and magnetic properties due to shape-driven modifications of charge motion or confinement effects. Local strain generated by curvature can also lead to changes in material properties due to electromechanical coupling. Here we review the development of electronic materials with nanoscale curved geometries. We examine the origin of shape-, confinement- and strain-induced effects and explore how to exploit these in electronic, spintronic and superconducting devices. We also consider the methods required to synthesize and characterize curvilinear nanostructures, and highlight key areas for the future development of curved electronics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Classical shape effects.
Fig. 2: Confinement-induced effects.
Fig. 3: Strain-induced effects.
Fig. 4: Fabrication of curvilinear nano-objects.

Similar content being viewed by others

References

  1. Parkin, S. S. P., Hayashi, M. & Thomas, L. Magnetic domain-wall racetrack memory. Science 320, 190–194 (2008).

    Article  Google Scholar 

  2. Albrecht, M. et al. Magnetic multilayers on nanospheres. Nat. Mater. 4, 203–206 (2005).

    Article  Google Scholar 

  3. Lavrijsen, R. et al. Magnetic ratchet for three-dimensional spintronic memory and logic. Nature 493, 647–650 (2013).

    Article  Google Scholar 

  4. Becker, C. et al. Self-assembly of highly sensitive 3D magnetic field vector angular encoders. Sci. Adv. 5, eaay7459 (2019).

    Article  Google Scholar 

  5. Karnaushenko, D. et al. Self-assembled on-chip-integrated giant magneto-impedance sensorics. Adv. Mater. 27, 6582–6589 (2015).

    Article  Google Scholar 

  6. Steinhögl, W., Schindler, G., Steinlesberger, G. & Engelhardt, M. Size-dependent resistivity of metallic wires in the mesoscopic range. Phys. Rev. B 66, 075414 (2002).

    Article  Google Scholar 

  7. Jedema, F. J., Filip, A. T. & van Wees, B. J. Electrical spin injection and accumulation at room temperature in an all-metal mesoscopic spin valve. Nature 410, 345–348 (2001).

    Article  Google Scholar 

  8. Valenzuela, S. O. & Tinkham, M. Spin-polarized tunneling in room-temperature mesoscopic spin valves. Appl. Phys. Lett. 85, 5914–5916 (2004).

    Article  Google Scholar 

  9. Kimura, T. & Otani, Y. Large spin accumulation in a permalloy-silver lateral spin valve. Phys. Rev. Lett. 99, 196604 (2007).

    Article  Google Scholar 

  10. Žutić, I., Fabian, J. & Das Sarma, S. Spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004).

    Article  Google Scholar 

  11. Kimura, T., Sato, T. & Otani, Y. Temperature evolution of spin relaxation in a NiFe/Cu lateral spin valve. Phys. Rev. Lett. 100, 066602 (2008).

    Article  Google Scholar 

  12. Das, K. S. et al. Independent geometrical control of spin and charge resistances in curved spintronics. Nano Lett. 19, 6839–6844 (2019).

    Article  Google Scholar 

  13. Schade, N. B., Schuster, D. I. & Nagel, S. R. A nonlinear, geometric Hall effect without magnetic field. Proc. Natl Acad. Sci. USA 116, 24475–24479 (2019).

    Article  Google Scholar 

  14. Dresselhaus, M. S., Dresselhaus, G. & Avouris, P. Carbon Nanotubes: Synthesis, Structure, Properties and Applications 1st edn (Springer, 2001).

  15. Bhandari, S. et al. Imaging cyclotron orbits of electrons in graphene. Nano Lett. 16, 1690–1694 (2016).

    Article  Google Scholar 

  16. Chang, C.-H. & Ortix, C. Theoretical prediction of a giant anisotropic magnetoresistance in carbon nanoscrolls. Nano Lett. 17, 3076–3080 (2017).

    Article  Google Scholar 

  17. Song, S. N., Wang, X. K., Chang, R. P. H. & Ketterson, J. B. Electronic properties of graphite nanotubules from galvanomagnetic effects. Phys. Rev. Lett. 72, 697–700 (1994).

    Article  Google Scholar 

  18. Kasumov, A. Y., Khodos, I. I., Ajayan, P. M. & Colliex, C. Electrical resistance of a single carbon nanotube. Europhys. Lett. 34, 429 (1996).

    Article  Google Scholar 

  19. Cresti, A., Fogler, M. M., Guinea, F., Castro Neto, A. H. & Roche, S. Quenching of the quantum Hall effect in graphene with scrolled edges. Phys. Rev. Lett. 108, 166602 (2012).

    Article  Google Scholar 

  20. Müller, J. E. Effect of a nonuniform magnetic field on a two-dimensional electron gas in the ballistic regime. Phys. Rev. Lett. 68, 385–388 (1992).

    Article  Google Scholar 

  21. Zhao, B. et al. High-order superlattices by rolling up van der Waals heterostructures. Nature 591, 385–390 (2021).

    Article  Google Scholar 

  22. Viculis, L. M., Mack, J. J. & Kaner, R. B. A chemical route to carbon nanoscrolls. Science 299, 1361 (2003).

    Article  Google Scholar 

  23. Xie, X. et al. Controlled fabrication of high-quality carbon nanoscrolls from monolayer graphene. Nano Lett. 9, 2565–2570 (2009).

    Article  Google Scholar 

  24. Lauhon, L. J., Gudiksen, M. S., Wang, D. & Lieber, C. M. Epitaxial core–shell and core–multishell nanowire heterostructures. Nature 420, 57–61 (2002).

    Article  Google Scholar 

  25. Rieger, T., Luysberg, M., Schäpers, T., Grützmacher, D. & Lepsa, M. I. Molecular beam epitaxy growth of GaAs/InAs core-shell nanowires and fabrication of InAs nanotubes. Nano Lett. 12, 5559–5564 (2012).

    Article  Google Scholar 

  26. Rosdahl, T. O., Manolescu, A. & Gudmundsson, V. Signature of snaking states in the conductance of core-shell nanowires. Nano Lett. 15, 254–258 (2015).

    Article  Google Scholar 

  27. Rickhaus, P. et al. Snake trajectories in ultraclean graphene p–n junctions. Nat. Commun. 6, 6470 (2015).

    Article  Google Scholar 

  28. Taychatanapat, T. et al. Conductance oscillations induced by ballistic snake states in a graphene heterojunction. Nat. Commun. 6, 6093 (2015).

    Article  Google Scholar 

  29. Ferrari, G., Goldoni, G., Bertoni, A., Cuoghi, G. & Molinari, E. Magnetic states in prismatic core multishell nanowires. Nano Lett. 9, 1631–1635 (2009).

    Article  Google Scholar 

  30. Bardarson, J. H. & Moore, J. E. Quantum interference and Aharonov Bohm oscillations in topological insulators. Rep. Prog. Phys. 76, 056501 (2013).

    Article  Google Scholar 

  31. Dufouleur, J. et al. Quasiballistic transport of Dirac fermions in a Bi2Se3 nanowire. Phys. Rev. Lett. 110, 186806 (2013).

    Article  Google Scholar 

  32. Ziegler, J. et al. Probing spin helical surface states in topological HgTe nanowires. Phys. Rev. B 97, 035157 (2018).

    Article  Google Scholar 

  33. Kozlovsky, R., Graf, A., Kochan, D., Richter, K. & Gorini, C. Magnetoconductance, quantum Hall effect, and Coulomb blockade in topological insulator nanocones. Phys. Rev. Lett. 124, 126804 (2020).

    Article  MathSciNet  Google Scholar 

  34. Nagasawa, F., Frustaglia, D., Saarikoski, H., Richter, K. & Nitta, J. Control of the spin geometric phase in semiconductor quantum rings. Nat. Commun. 4, 2526 (2013).

    Article  Google Scholar 

  35. Ying, Z.-J., Gentile, P., Ortix, C. & Cuoco, M. Designing electron spin textures and spin interferometers by shape deformations. Phys. Rev. B 94, 081406 (2016).

    Article  Google Scholar 

  36. Nitta, J., Meijer, F. E. & Takayanagi, H. Spin-interference device. Appl. Phys. Lett. 75, 695–697 (1999).

    Article  Google Scholar 

  37. König, M. et al. Direct observation of the Aharonov-Casher phase. Phys. Rev. Lett. 96, 076804 (2006).

    Article  Google Scholar 

  38. Frustaglia, D. & Richter, K. Spin interference effects in ring conductors subject to Rashba coupling. Phys. Rev. B 69, 235310 (2004).

    Article  Google Scholar 

  39. Nagasawa, F., Takagi, J., Kunihashi, Y., Kohda, M. & Nitta, J. Experimental demonstration of spin geometric phase: radius dependence of time-reversal Aharonov-Casher oscillations. Phys. Rev. Lett. 108, 086801 (2012).

    Article  Google Scholar 

  40. Wang, M. et al. Geometry-assisted topological transitions in spin interferometry. Phys. Rev. Lett. 123, 266804 (2019).

    Article  Google Scholar 

  41. Gentile, P., Cuoco, M. & Ortix, C. Edge states and topological insulating phases generated by curving a nanowire with Rashba spin-orbit coupling. Phys. Rev. Lett. 115, 256801 (2015).

    Article  Google Scholar 

  42. Zak, J. Symmetry criterion for surface states in solids. Phys. Rev. B 32, 2218–2226 (1985).

    Article  Google Scholar 

  43. Pandey, S., Scopigno, N., Gentile, P., Cuoco, M. & Ortix, C. Topological quantum pump in serpentine-shaped semiconducting narrow channels. Phys. Rev. B 97, 241103 (2018).

    Article  Google Scholar 

  44. Thouless, D. J. Quantization of particle transport. Phys. Rev. B 27, 6083–6087 (1983).

    Article  MathSciNet  Google Scholar 

  45. Niu, Q. Towards a quantum pump of electric charges. Phys. Rev. Lett. 64, 1812–1815 (1990).

    Article  Google Scholar 

  46. Pylypovskyi, O. V. et al. Rashba torque driven domain wall motion in magnetic helices. Sci. Rep. 6, 23316 (2016).

    Article  Google Scholar 

  47. Yershov, K. V., Kravchuk, V. P., Sheka, D. D. & Gaididei, Y. Curvature and torsion effects in spin-current driven domain wall motion. Phys. Rev. B 93, 094418 (2016).

    Article  Google Scholar 

  48. Gaididei, Y., Kravchuk, V. P. & Sheka, D. D. Curvature effects in thin magnetic shells. Phys. Rev. Lett. 112, 257203 (2014).

    Article  Google Scholar 

  49. Sheka, D. D., Kravchuk, V. P., Yershov, K. V. & Gaididei, Y. Torsion-induced effects in magnetic nanowires. Phys. Rev. B 92, 054417 (2015).

    Article  Google Scholar 

  50. Bogdanov, A. & Hubert, A. Thermodynamically stable magnetic vortex states in magnetic crystals. J. Magn. Magn. Mater. 138, 255–269 (1994).

    Article  Google Scholar 

  51. Yershov, K. V., Kravchuk, V. P., Sheka, D. D. & Rössler, U. K. Curvature effects on phase transitions in chiral magnets. SciPost Phys. 9, 43 (2020).

    Article  MathSciNet  Google Scholar 

  52. Huo, X. & Liu, Y. The stability of a skyrmion in a nanotube. N. J. Phys. 21, 093024 (2019).

    Article  Google Scholar 

  53. Yan, M., Andreas, C., Kakay, A., Garcia-Sanchez, F. & Hertel, R. Chiral symmetry breaking and pair-creation mediated Walker breakdown in magnetic nanotubes. Appl. Phys. Lett. 100, 252401 (2012).

    Article  Google Scholar 

  54. Schryer, N. L. & Walker, L. R. The motion of 180° domain walls in uniform d.c. magnetic fields. J. Appl. Phys. 45, 5406–5421 (1974).

    Article  Google Scholar 

  55. Otálora, J. A., Yan, M., Schultheiss, H., Hertel, R. & Kákay, A. Curvature-induced asymmetric spin-wave dispersion. Phys. Rev. Lett. 117, 227203 (2016).

    Article  Google Scholar 

  56. Körber, L. et al. Symmetry- and curvature effects on spin waves in vortex-state hexagonal nanotubes. Phys. Rev. B 104, 184429 (2021).

    Article  Google Scholar 

  57. Linder, M. & Robinson, J. W. A. Superconducting spintronics. Nat. Phys. 11, 307–315 (2015).

    Article  Google Scholar 

  58. Sigrist, M. & Ueda, K. Phenomenological theory of unconventional superconductivity. Rev. Mod. Phys. 63, 239–311 (1991).

    Article  Google Scholar 

  59. Bergeret, F. S., Volkov, A. F. & Efetov, K. B. Long-range proximity effects in superconductor-ferromagnet structures. Phys. Rev. Lett. 86, 4096–4099 (2001).

    Article  Google Scholar 

  60. Eschrig, M. & Löfwander, T. Triplet supercurrents in clean and disordered half-metallic ferromagnets. Nat. Phys. 4, 138–143 (2008).

    Article  Google Scholar 

  61. Robinson, J. W. A., Witt, J. D. S. & Blamire, M. Controlled injection of spin-triplet supercurrents into a strong ferromagnet. Science 329, 59–61 (2010).

    Article  Google Scholar 

  62. Bergeret, F. S. & Tokatly, I. V. Spin-orbit coupling as a source of long-range triplet proximity effect in superconductor-ferromagnet hybrid structures. Phys. Rev. B 89, 134517 (2014).

    Article  Google Scholar 

  63. Gorkov, L. P. & Rashba, E. I. Superconducting 2D system with lifted spin degeneracy: mixed singlet-triplet state. Phys. Rev. Lett. 87, 037004 (2001).

    Article  Google Scholar 

  64. Frigeri, P. A., Agterberg, D. F., Koga, A. & Sigrist, M. Superconductivity without inversion symmetry: MnSi versus CePt3Si. Phys. Rev. Lett. 92, 097001 (2004).

    Article  Google Scholar 

  65. Ying, Z.-J., Cuoco, M., Ortix, C. & Gentile, P. Tuning pairing amplitude and spin-triplet texture by curving superconducting nanostructures. Phys. Rev. B 96, 100506 (2017).

    Article  Google Scholar 

  66. Francica, G., Cuoco, M. & Gentile, P. Topological superconducting phases and Josephson effect in curved superconductors with time reversal invariance. Phys. Rev. B 96, 100506 (2017).

    Google Scholar 

  67. Mei, Y. et al. Optical properties of a wrinkled nanomembrane with embedded quantum well. Nano Lett. 7, 1676–1679 (2007).

    Article  Google Scholar 

  68. Zubko, P., Catalan, G. & Tagantsev, A. K. Flexoelectric effect in solids. Annu. Rev. Mater. Res. 43, 387–421 (2013).

    Article  Google Scholar 

  69. Van de Walle, C. G. Band lineups and deformation potentials in the model-solid theory. Phys. Rev. B 39, 1871–1883 (1989).

    Article  Google Scholar 

  70. Ortix, C., Kiravittaya, S., Schmidt, O. G. & van den Brink, J. Curvature-induced geometric potential in strain-driven nanostructures. Phys. Rev. B 84, 045438 (2011).

    Article  Google Scholar 

  71. Ortix, C. & van den Brink, J. Effect of curvature on the electronic structure and bound-state formation in rolled-up nanotubes. Phys. Rev. B 81, 165419 (2010).

    Article  Google Scholar 

  72. Aoki, H., Koshino, M., Takeda, D., Morise, H. & Kuroki, K. Electronic structure of periodic curved surfaces: topological band structure. Phys. Rev. B 65, 035102 (2001).

    Article  Google Scholar 

  73. Pandey, S. & Ortix, C. Topological end states due to inhomogeneous strains in wrinkled semiconducting ribbons. Phys. Rev. B 93, 195420 (2016).

    Article  Google Scholar 

  74. de Juan, F., Cortijo, A. & Vozmediano, M. A. H. Charge inhomogeneities due to smooth ripples in graphene sheets. Phys. Rev. B 76, 165409 (2007).

    Article  Google Scholar 

  75. Meyer, J. C. et al. The structure of suspended graphene sheets. Nature 446, 60–63 (2007).

    Article  Google Scholar 

  76. Martin, J. et al. Observation of electron–hole puddles in graphene using a scanning single-electron transistor. Nat. Phys. 4, 144–148 (2008).

    Article  Google Scholar 

  77. de Juan, F., Sturla, M. & Vozmediano, M. A. H. Space dependent Fermi velocity in strained graphene. Phys. Rev. Lett. 108, 227205 (2012).

    Article  Google Scholar 

  78. Guinea, F., Katsnelson, M. I. & Geim, A. K. Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering. Nat. Phys. 6, 30–33 (2010).

    Article  Google Scholar 

  79. Levy, N. et al. Strain-induced pseudo–magnetic fields greater than 300 tesla in graphene nanobubbles. Science 329, 544–547 (2010).

    Article  Google Scholar 

  80. Jiang, Y. et al. Visualizing strain-induced pseudomagnetic fields in graphene through an hBN magnifying glass. Nano Lett. 17, 2839–2843 (2017).

    Article  Google Scholar 

  81. Couto, N. J. G. et al. Random strain fluctuations as dominant disorder source for high-quality on-substrate graphene devices. Phys. Rev. X 4, 041019 (2014).

    Google Scholar 

  82. Rizzo, D. J. et al. Nanometer-scale lateral p-n junctions in graphene/α-RuCl3 heterostructures. Nano Lett. 22, 1946–1953 (2022).

    Article  Google Scholar 

  83. Nigge, P. et al. Room temperature strain-induced Landau levels in graphene on a wafer-scale platform. Sci. Adv. 5, eaaw5593 (2019).

    Article  Google Scholar 

  84. Mao, J. et al. Evidence of flat bands and correlated states in buckled graphene superlattices. Nature 584, 215–220 (2020).

    Article  Google Scholar 

  85. Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).

    Article  Google Scholar 

  86. Sodemann, I. & Fu, L. Quantum nonlinear Hall effect induced by Berry curvature dipole in time-reversal invariant materials. Phys. Rev. Lett. 115, 216806 (2015).

    Article  Google Scholar 

  87. Xu, S.-Y. et al. Electrically switchable Berry curvature dipole in the monolayer topological insulator WTe2. Nat. Phys. 14, 900–906 (2018).

    Article  Google Scholar 

  88. Ma, Q. et al. Observation of the nonlinear Hall effect under time-reversal-symmetric conditions. Nature 565, 337–342 (2019).

    Article  Google Scholar 

  89. Zhang, Y. & Fu, L. Terahertz detection based on nonlinear Hall effect without magnetic field. Proc. Natl Acad. Sci. USA 118, e2100736118 (2021).

    Article  MathSciNet  Google Scholar 

  90. Battilomo, R., Scopigno, N. & Ortix, C. Berry curvature dipole in strained graphene: a Fermi surface warping effect. Phys. Rev. Lett. 123, 196403 (2019).

    Article  MathSciNet  Google Scholar 

  91. Ho, S.-C. et al. Hall effects in artificially corrugated bilayer graphene without breaking time-reversal symmetry. Nat. Electron. 4, 116–125 (2021).

    Article  Google Scholar 

  92. Kläui, M., Vaz, C., Heyderman, L., Rüdiger, U. & Bland, J. Spin switching phase diagram of mesoscopic ring magnets. J. Magn. Magn. Mater. 290–291, 61–67 (2005).

    Article  Google Scholar 

  93. Volkov, O. M. et al. Experimental observation of exchange-driven chiral effects in curvilinear magnetism. Phys. Rev. Lett. 123, 077201 (2019).

    Article  Google Scholar 

  94. Phatak, C., Petford-Long, A. K. & Heinonen, O. Direct observation of unconventional topological spin structure in coupled magnetic discs. Phys. Rev. Lett. 108, 067205 (2012).

    Article  Google Scholar 

  95. Streubel, R. et al. Magnetism in curved geometries (Topical Review). J. Phys. D 49, 363001 (2016).

    Article  Google Scholar 

  96. Rogers, J. A., Lagally, M. G. & Nuzzo, R. G. Synthesis, assembly and applications of semiconductor nanomembranes. Nature 477, 45–53 (2011).

    Article  Google Scholar 

  97. Schmidt, O. G. & Eberl, K. Nanotechnology: thin solid films roll up into nanotubes. Nature 410, 168 (2001).

    Article  Google Scholar 

  98. Smith, E. J., Makarov, D., Sanchez, S., Fomin, V. M. & Schmidt, O. G. Magnetic microhelix coil structures. Phys. Rev. Lett. 107, 097204 (2011).

    Article  Google Scholar 

  99. Cui, X. et al. Rolling up transition metal dichalcogenide nanoscrolls via one drop of ethanol. Nat. Commun. 9, 1301 (2018).

    Article  Google Scholar 

  100. Grimm, D. et al. Rolled-up nanomembranes as compact 3D architectures for field effect transistors and fluidic sensing applications. Nano Lett. 13, 213–218 (2012).

    Article  Google Scholar 

  101. Müller, C. et al. Tuning giant magnetoresistance in rolled-up Co-Cu nanomembranes by strain engineering. Nanoscale 4, 7155–7160 (2012).

    Article  Google Scholar 

  102. Thurmer, D. J., Bof Bufon, C. C. B., Deneke, C. & Schmidt, O. G. Nanomembrane-based mesoscopic superconducting hybrid junctions. Nano Lett. 10, 3704–3709 (2010).

    Article  Google Scholar 

  103. Streubel, R. et al. Magnetic vortices on closely packed spherically curved surfaces. Phys. Rev. B 85, 174429 (2012).

    Article  Google Scholar 

  104. Xu, S. et al. Assembly of micro/nanomaterials into complex, three-dimensional architectures by compressive buckling. Science 347, 154–159 (2015).

    Article  Google Scholar 

  105. Zhao, Y.-P., Ye, D.-X., Wang, G.-C. & Lu, T.-M. Novel nano-column and nano-flower arrays by glancing angle deposition. Nano Lett. 2, 351–354 (2002).

    Article  Google Scholar 

  106. Gibbs, J. G. et al. Nanohelices by shadow growth. Nanoscale 6, 9457–9466 (2014).

    Article  Google Scholar 

  107. Eslami, S. et al. Chiral nanomagnets. ACS Photon. 1, 1231–1236 (2014).

    Article  Google Scholar 

  108. Williams, G. et al. Two-photon lithography for 3D magnetic nanostructure fabrication. Nano Res. 11, 845–854 (2018).

    Article  Google Scholar 

  109. Hunt, M. et al. Harnessing multi-photon absorption to produce three-dimensional magnetic structures at the nanoscale. Materials 13, 761 (2020).

    Article  Google Scholar 

  110. Jung, W. et al. Three-dimensional nanoprinting via charged aerosol jets. Nature 592, 54–59 (2021).

    Article  Google Scholar 

  111. Teresa, J. M. D. et al. Review of magnetic nanostructures grown by focused electron beam induced deposition (FEBID). J. Phys. D 49, 243003 (2016).

    Article  Google Scholar 

  112. Huth, M., Porrati, F. & Dobrovolskiy, O. Focused electron beam induced deposition meets materials science. Microelectron. Eng. 185–186, 9–28 (2018).

    Article  Google Scholar 

  113. Skoric, L. et al. Layer-by-layer growth of complex-shaped three-dimensional nanostructures with focused electron beams. Nano Lett. 20, 184–191 (2020).

    Article  Google Scholar 

  114. Meng, F. et al. Non-planar geometrical effects on the magnetoelectrical signal in a three-dimensional nanomagnetic circuit. ACS Nano 15, 6765–6773 (2021).

    Article  Google Scholar 

  115. Streubel, R. et al. Retrieving spin textures on curved magnetic thin films with full-field soft X-ray microscopies. Nat. Commun. 6, 7612 (2015).

    Article  Google Scholar 

  116. Wolf, D. et al. Holographic vector field electron tomography of three-dimensional nanomagnets. Commun. Phys. 2, 87 (2019).

    Article  Google Scholar 

  117. Volkov, O. M., Rössler, U. K., Fassbender, J. & Makarov, D. Concept of artificial magnetoelectric materials via geometrically controlling curvilinear helimagnets. J. Phys. D 52, 345001 (2019).

    Article  Google Scholar 

  118. Makarov, D. et al. New dimension in magnetism and superconductivity: 3D and curvilinear nanoarchitectures. Adv. Mater. 34, 2101758 (2022).

    Article  Google Scholar 

  119. Donnelly, C. et al. Complex free-space magnetic field textures induced by three-dimensional magnetic nanostructures. Nat. Nanotechnol. 17, 136–142 (2022).

    Article  Google Scholar 

  120. Grollier, J. et al. Neuromorphic spintronics. Nat. Electron. 3, 360–370 (2020).

    Article  Google Scholar 

  121. Pylypovskyi, O. V. et al. Curvilinear one-dimensional antiferromagnets. Nano Lett. 20, 8157–8162 (2020).

    Article  Google Scholar 

  122. Pesin, D. & MacDonald, A. H. Spintronics and pseudospintronics in graphene and topological insulators. Nat. Mater. 11, 409–416 (2012).

    Article  Google Scholar 

  123. Mannix, A. J. et al. Robotic four-dimensional pixel assembly of van der Waals solids. Nat. Nanotechnol. 17, 361–366 (2022).

    Article  Google Scholar 

  124. Zamborlini, G. et al. Nanobubbles at GPa pressure under graphene. Nano Lett. 15, 6162–6169 (2015).

    Article  Google Scholar 

  125. Khestanova, E., Guinea, F., Fumagalli, L., Geim, A. K. & Grigorieva, I. V. Universal shape and pressure inside bubbles appearing in van der Waals heterostructures. Nat. Commun. 7, 12587 (2016).

    Article  Google Scholar 

  126. Villarreal, R. et al. Breakdown of universal scaling for nanometer-sized bubbles in graphene. Nano Lett. 21, 8103–8110 (2021).

    Article  Google Scholar 

  127. Chang, C.-H., van den Brink, J. & Ortix, C. Strongly anisotropic ballistic magnetoresistance in compact three-dimensional semiconducting nanoarchitectures. Phys. Rev. Lett. 113, 227205 (2014).

    Article  Google Scholar 

  128. Szameit, A. et al. Geometric potential and transport in photonic topological crystals. Phys. Rev. Lett. 104, 150403 (2010).

    Article  Google Scholar 

  129. Papaj, M. & Fu, L. Magnus Hall effect. Phys. Rev. Lett. 123, 216802 (2019).

    Article  Google Scholar 

  130. Schine, N., Ryou, A., Gromov, A., Sommer, A. & Simon, J. Synthetic Landau levels for photons. Nature 534, 671–675 (2016).

    Article  Google Scholar 

  131. Can, T., Chiu, Y. H., Laskin, M. & Wiegmann, P. Emergent conformal symmetry and geometric transport properties of quantum Hall states on singular surfaces. Phys. Rev. Lett. 117, 266803 (2016).

    Article  Google Scholar 

  132. van Thiel, T. C. et al. Coupling charge and topological reconstructions at polar oxide interfaces. Phys. Rev. Lett. 127, 127202 (2021).

    Article  Google Scholar 

  133. Paskiewicz, D. M., Sichel-Tissot, R., Karapetrova, E., Stan, L. & Fong, D. D. Single-crystalline SrRuO3 nanomembranes: a platform for flexible oxide electronics. Nano Lett. 16, 534–542 (2016).

    Article  Google Scholar 

  134. Hadjimichael, M. et al. Metal–ferroelectric supercrystals with periodically curved metallic layers. Nat. Mater. 20, 495–502 (2021).

    Article  Google Scholar 

  135. Mercaldo, M. T., Ortix, C., Giazotto, F. & Cuoco, M. Orbital vortices in s-wave spin-singlet superconductors in zero magnetic field. Phys. Rev. B 105, L140507 (2022).

    Article  Google Scholar 

  136. Laeven, T., Nijholt, B., Wimmer, M. & Akhmerov, A. R. Enhanced proximity effect in zigzag-shaped majorana Josephson junctions. Phys. Rev. Lett. 125, 086802 (2020).

    Article  Google Scholar 

  137. Jensen, H. & Koppe, H. Quantum mechanics with constraints. Ann. Phys. 63, 586–591 (1971).

    Article  Google Scholar 

  138. da Costa, R. C. T. Quantum mechanics of a constrained particle. Phys. Rev. A 23, 1982–1987 (1981).

    Article  MathSciNet  Google Scholar 

  139. Ortix, C. Quantum mechanics of a spin-orbit coupled electron constrained to a space curve. Phys. Rev. B 91, 245412 (2015).

    Article  Google Scholar 

  140. Kravchuk, V. P. et al. Topologically stable magnetization states on a spherical shell: curvature-stabilized skyrmions. Phys. Rev. B 94, 144402 (2016).

    Article  Google Scholar 

  141. Asano, Y. Josephson spin current in triplet superconductor junctions. Phys. Rev. B 74, 220501 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the numerous colleagues with whom we have collaborated on the topics described in this Review. We also acknowledge the Future and Emerging Technologies (FET) Programme within the Seventh Framework Programme for Research of the European Commission under FET-Open grant no. 618083 (CNTQC) for the financial support to the work performed by the authors on this topic. C.O. acknowledges support from a VIDI grant (Project 680-47-543) financed by the Netherlands Organization for Scientific Research (NWO). The work of D.M. and O.M.V. was financed in part via numerous national and European projects including German Research Foundation (DFG) grants MA 5144/9-1, MA 5144/13-1, MA 5144/28-1 and VO 2598/1-1, as well as the Helmholtz Association of German Research Centres in the frame of the Helmholtz Innovation Lab ‘FlexiSens’. Z.-J.Y. acknowledges support from the National Natural Science Foundation of China (grant no. 11974151).

Author information

Authors and Affiliations

Authors

Contributions

C.O. coordinated the project. P.G. produced the original illustrations. All authors wrote and commented on the manuscript.

Corresponding author

Correspondence to Carmine Ortix.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Electronics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gentile, P., Cuoco, M., Volkov, O.M. et al. Electronic materials with nanoscale curved geometries. Nat Electron 5, 551–563 (2022). https://doi.org/10.1038/s41928-022-00820-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41928-022-00820-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing