Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A near-infrared colloidal quantum dot imager with monolithically integrated readout circuitry


Imagers that operate in the near-infrared region (wavelengths of 0.7–1.4 µm) are of use in applications such as material sorting, machine vision and autonomous driving. However, such imagers typically use the flip-chip method to connect infrared photodiodes with silicon-based readout integrated circuits, as the need for high-temperature processing and single-crystalline substrates prevents direct integration. This increases processing complexity and cost. Here we report high-resolution imagers that monolithically integrate near-infrared colloidal quantum dot photodiodes with complementary metal–oxide–semiconductor readout integrated circuits. The colloidal quantum dot photodetector is designed with a structure compatible with complementary metal–oxide–semiconductors and exhibits a spectral range of 400–1,300 nm, room-temperature detectivity of 2.1 × 1012 Jones, −3 dB bandwidth of 140 kHz and linear dynamic range of over 100 dB. With this approach, we create a large (640 × 512 pixels) imager that exhibits a spatial resolution of 40 line pairs per millimetre at a modulation transfer function of 50%, and we show that it can be used for vein imaging and matter identification.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Design of CMOS-compatible PbS CQD photodiode.
Fig. 2: Performance of CMOS-compatible PbS CQD photodiodes.
Fig. 3: Imager integrating CMOS ROIC and PbS CQD photodiodes.
Fig. 4: Performance of PbS CQD imager.
Fig. 5: Applications of PbS CQD imager.

Data availability

Source data are provided with this paper. The data that support the findings of this study are available from the corresponding authors upon reasonable request.


  1. Chen, Y., Chao, K. & Kim, M. S. Machine vision technology for agricultural applications. Comput. Electron. Agr. 36, 173–191 (2002).

    Article  Google Scholar 

  2. Saran, R. & Curry, R. J. Lead sulphide nanocrystal photodetector technologies. Nat. Photon. 10, 81–92 (2016).

    Article  Google Scholar 

  3. Konstantatos, G. & Sargent, E. H. Nanostructured materials for photon detection. Nat. Nanotechnol. 5, 391–400 (2010).

    Article  Google Scholar 

  4. Rogalski, A., Antoszewski, J. & Faraone, L. Third-generation infrared photodetector arrays. J. Appl. Phys. 105, 091101 (2009).

    Article  Google Scholar 

  5. Lu, H., Carroll, G. M., Neale, N. R. & Beard, M. C. Infrared quantum dots: progress, challenges, and opportunities. ACS Nano 13, 939–953 (2019).

    Google Scholar 

  6. Livache, C., Martinez, B., Goubet, N., Ramade, J. & Lhuillier, E. Road map for nanocrystal based infrared photodetectors. Front. Chem. 6, 575 (2018).

    Article  Google Scholar 

  7. Otani, Y. Snapshot full Stokes imager by polarization cameras and its application to bio-imaging. In Proc. SPIE 11709 Ultra-High-Definition Imaging Systems IV 1170904 (SPIE, 2021).

  8. Lei, W., Antoszewski, J. & Faraone, L. Progress, challenges, and opportunities for HgCdTe infrared materials and detectors. Appl. Phys. Rev. 2, 041303 (2015).

    Article  Google Scholar 

  9. Kinch, M. A. The rationale for ultra-small pitch IR systems. In Proc. SPIE 9070 Infrared Technology and Applications XL 907032 (SPIE, 2014).

  10. Rogalski, A. Infrared Detectors (CRC Press, 2010).

  11. Manda, S. et al. High-definition visible-SWIR InGaAs image sensor using Cu-Cu bonding of III-V to silicon wafer. In 2019 IEEE International Electron Devices Meeting 16.7.1–16.7.4 (IEEE, 2019).

  12. Jean, J. et al. Synthesis cost dictates the commercial viability of lead sulfide and perovskite quantum dot photovoltaics. Energy Environ. Sci. 11, 2295–2305 (2018).

    Article  Google Scholar 

  13. Chen, W. et al. Spray-deposited PbS colloidal quantum dot solid for near-infrared photodetectors. Nano Energy 78, 105254 (2020).

  14. Klem, E. J. D., Gregory, C., Temple, D. & Lewis, J. PbS colloidal quantum dot photodiodes for low-cost SWIR sensing. In Proc. SPIE 9451 Infrared Technology and Applications XL 907032 (SPIE, 2015).

  15. Rauch, T. et al. Near-infrared imaging with quantum-dot-sensitized organic photodiodes. Nat. Photon. 3, 332–336 (2009).

    Article  Google Scholar 

  16. Goossens, S. et al. Broadband image sensor array based on graphene–CMOS integration. Nat. Photon. 11, 366–371 (2017).

    Article  Google Scholar 

  17. Barrow, L. et al. A QuantumFilm based quadVGA 1.5 µm pixel image sensor with over 40% QE at 940 nm for actively illuminated applications. IISW Dig. Tech. Pap. 378–381 (2017).

  18. SWIR Vision Systems. Acuros CQD 192/1920L GigE SWIR Camera (accessed 1 March 2021);

  19. Georgitzikis, E. et al. Organic- and QD-based image sensors integrated on 0.13 μm CMOS ROIC for high resolution, multispectral infrared imaging. Proc. IISW (2019).

  20. Lee, J. et al. Imaging in short-wave infrared with 1.82 μm pixel pitch quantum dot image sensor. In IEEE International Electron Devices Meeting 16.5.1–16.5.4 (IEEE, 2020).

  21. Pejović, V. et al. Infrared colloidal quantum dot image sensors. IEEE Trans. Electron Devices 69, 2840–2850 (2021).

  22. Pejovic, V. et al. Thin-film photodetector optimization for high-performance short-wavelength infrared imaging. IEEE Electron Device Lett. 42, 1196–1199 (2021).

    Article  Google Scholar 

  23. Pal, B. N. et al. High-sensitivity p–n junction photodiodes based on PbS nanocrystal quantum dots. Adv. Funct. Mater. 22, 1741–1748 (2012).

    Article  Google Scholar 

  24. Sliz, R. et al. Stable colloidal quantum dot inks enable inkjet-printed high-sensitivity infrared photodetectors. ACS Nano 13, 11988–11995 (2019).

    Article  Google Scholar 

  25. Manders, J. R. et al. Low-noise multispectral photodetectors made from all solution-processed inorganic semiconductors. Adv. Funct. Mater. 24, 7205–7210 (2014).

    Google Scholar 

  26. Zhang, J. et al. Preparation of Cd/Pb chalcogenide heterostructured Janus particles via controllable cation exchange. ACS Nano 9, 7151–7163 (2015).

    Article  Google Scholar 

  27. Zhang, C. et al. Combination of cation exchange and quantized Ostwald ripening for controlling size distribution of lead chalcogenide quantum dots. Chem. Mater. 29, 3615–3622 (2017).

    Article  Google Scholar 

  28. Heath, J. T., Cohen, J. D. & Shafarman, W. N. Bulk and metastable defects in CuIn1−xGaxSe2 thin films using drive-level capacitance profiling. J. Appl. Phys. 95, 1000–1010 (2004).

    Article  Google Scholar 

  29. Artegiani, E. et al. Analysis of a novel CuCl2 back contact process for improved stability in CdTe solar cells. Prog. Photovolt. 27, 706–715 (2019).

    Google Scholar 

  30. Ni, Z. et al. Resolving spatial and energetic distributions of trap states in metal halide perovskite solar cells. Science 367, 1352–1358 (2020).

    Article  Google Scholar 

  31. Wang, R. et al. Highly efficient inverted structural quantum dot solar cells. Adv. Mater. 30, 1704882 (2018).

    Article  Google Scholar 

  32. Fuentes-Hernandez, C. et al. Large-area low-noise flexible organic photodiodes for detecting faint visible light. Science 370, 698–701 (2020).

    Article  Google Scholar 

  33. Cong, H. et al. High-speed waveguide-integrated Ge/Si avalanche photodetector. Chinese Phys. B 25, 058503 (2016).

  34. Chow, W. W., Vawter, G. A. & Junpeng, G. Approaching intraband relaxation rates in the high-speed modulation of semiconductor lasers. IEEE J. Quantum Electron. 40, 989–995 (2004).

    Article  Google Scholar 

  35. Geremew, A. et al. Low-frequency electronic noise in superlattice and random-packed thin films of colloidal quantum dots. Nanoscale 11, 20171–20178 (2019).

    Article  Google Scholar 

  36. Liu, H., Lhuillier, E. & Guyot-Sionnest, P. 1/f noise in semiconductor and metal nanocrystal solids. J. Appl. Phys. 115, 154309 (2014).

    Article  Google Scholar 

  37. Carey, G. H., Levina, L., Comin, R., Voznyy, O. & Sargent, E. H. Record charge carrier diffusion length in colloidal quantum dot solids via mutual dot-to-dot surface passivation. Adv. Mater. 27, 3325–3330 (2015).

    Article  Google Scholar 

  38. Zhitomirsky, D. et al. Engineering colloidal quantum dot solids within and beyond the mobility-invariant regime. Nat. Commun. 5, 3803 (2014).

    Article  Google Scholar 

  39. Appendix I: scene-referenced SNR and dynamic range (Imatest, 2021);

  40. Teraphongphom, N., Kong, C. S., Warram, J. M. & Rosenthal, E. L. Specimen mapping in head and neck cancer using fluorescence imaging. Laryngoscope 2, 447–452 (2017).

    Article  Google Scholar 

  41. Hamamatsu. InGaAs camera C10633-13-23 (Hamamatsu, 2013);

  42. Baek, S. W. et al. Efficient hybrid colloidal quantum dot/organic solar cells mediated by near-infrared sensitizing small molecules. Nat. Energy 4, 969–976 (2019).

    Article  Google Scholar 

  43. Tavakoli, M. M. et al. Efficient, flexible, and ultra-lightweight inverted PbS quantum dots solar cells on all-CVD-growth of parylene/graphene/oCVD PEDOT substrate with high power-per-weight. Adv. Mater. Inter. 7, 2000498 (2020).

    Article  Google Scholar 

  44. Lee, J. W., Kim, D. Y. & So, F. Unraveling the gain mechanism in high performance solution-processed PbS infrared PIN photodiodes. Adv. Funct. Mater. 25, 1233–1238 (2015).

    Article  Google Scholar 

  45. Dong, R. et al. An ultraviolet-to-NIR broad spectral nanocomposite photodetector with gain. Adv. Opt. Mater. 2, 549–554 (2014).

    Article  Google Scholar 

  46. Yoo, J., Jeong, S., Kim, S. & Je, J. H. A stretchable nanowire UV-vis-NIR photodetector with high performance. Adv. Mater. 27, 1712–1717 (2015).

    Article  Google Scholar 

  47. Wei, Y. et al. Hybrid organic/PbS quantum dot bilayer photodetector with low dark current and high detectivity. Adv. Funct. Mater. 28, 1706690 (2018).

    Article  Google Scholar 

  48. Qiao, K. K. et al. Efficient interface and bulk passivation of PbS quantum dot infrared photodetectors by PbI2 incorporation. RSC Adv. 7, 52947–52954 (2017).

    Article  Google Scholar 

  49. Clifford, J. P. et al. Fast, sensitive and spectrally tuneable colloidal-quantum-dot photodetectors. Nat. Nanotechnol. 4, 40–44 (2009).

    Article  Google Scholar 

Download references


This work was financially supported by the National Key Research and Development Program of China (2021YFA0715500; J.T.), National Natural Science Foundation of China (61725401; J.T. and 61904065; L.G.) and Fund for Innovative Research Groups of the Natural Science Foundation of Hubei Province (2020CFA034; J.T.). We thank the Analytical and Testing Center of HUST and the facility support of the Center for Nanoscale Characterization and Devices (CHCB), WNLO-HUST. We appreciate helpful discussions from Hao Li and Prof. Dongsheng Liu.

Author information

Authors and Affiliations



L.G. and J.T. supervised the whole project. J.L., P.L. and D.C. fabricated the photodiodes and the imager. J.K., K.X. and J.Z. provided PbS CQDs. J.L., T.S., X.Q., L.C. and T.W. performed the measurements and analysed the experimental data. L.G., J.T., H.S., W.W. and J.C. supported the theoretical analysis. J.L., L.G. and J.T. wrote the manuscript. All the authors reviewed and commented on the manuscript.

Corresponding authors

Correspondence to Liang Gao or Jiang Tang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Electronics thanks Xingtian Yin, Peter Müller-Buschbaum and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–15, Discussion and Tables 1–4.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Liu, P., Chen, D. et al. A near-infrared colloidal quantum dot imager with monolithically integrated readout circuitry. Nat Electron (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI:


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing