Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Graphene-assisted metal transfer printing for wafer-scale integration of metal electrodes and two-dimensional materials


Metal–semiconductor junctions are essential components in electronic and optoelectronic devices. With two-dimensional semiconductors, conventional metal deposition via ion bombardment results in chemical disorder and Fermi-level pinning. Transfer printing techniques—in which metal electrodes are predeposited and transferred to create van der Waals junctions—have thus been developed, but the predeposition of metal electrodes creates chemical bonds on the substrate, which makes subsequent transfer difficult. Here we report a graphene-assisted metal transfer printing process that can be used to form van der Waals contacts between two-dimensional materials and three-dimensional metal electrodes. We show that arrays of metal electrodes with both weak (copper, silver and gold) and strong (platinum, titanium and nickel) adhesion strengths can be delaminated from a four-inch graphene wafer due to its weak van der Waals force and absence of dangling bonds, and transfer printed onto different substrates (graphene, molybdenum disulfide and silicon dioxide). We use this approach to create molybdenum disulfide field-effect transistors with different printed metal electrodes, allowing the Schottky barrier height to be tuned and ohmic and Schottky contacts to be formed. We also demonstrate the batch production of molybdenum disulfide transistor arrays with uniform electrical characteristics.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Illustration and optical images of the graphene-assisted metal transfer printing process.
Fig. 2: Au patterns transferred onto different substrates.
Fig. 3: Contact properties of MoS2 transistors with vdW-integrated 3D metals.
Fig. 4: Electrical properties of the MoS2 back-gated FET array with transferred Ag contacts.

Data availability

Source data are provided with this paper. The data that support the plots within this paper and other findings of this study are available from the corresponding authors upon reasonable request.


  1. Schulman, D. S., Arnold, A. J. & Das, S. Contact engineering for 2D materials and devices. Chem. Soc. Rev. 47, 3037–3058 (2018).

    Article  Google Scholar 

  2. Allain, A., Kang, J. H., Banerjee, K. & Kis, A. Electrical contacts to two-dimensional semiconductors. Nat. Mater. 14, 1195–1205 (2015).

    Article  Google Scholar 

  3. Mleczko, M. J. et al. Contact engineering high-performance n-type MoTe2 transistors. Nano Lett. 19, 6352–6362 (2019).

    Article  Google Scholar 

  4. Cho, K. et al. Contact-engineered electrical properties of MoS2 field-effect transistors via selectively deposited thiol-molecules. Adv. Mater. 30, e1705540 (2018).

    Article  Google Scholar 

  5. Wang, T. et al. High-performance WSe2 phototransistors with 2D/2D ohmic contacts. Nano Lett. 18, 2766–2771 (2018).

    Article  Google Scholar 

  6. Cui, X. et al. Low-temperature ohmic contact to monolayer MoS2 by van der Waals bonded Co/h-BN electrodes. Nano Lett. 17, 4781–4786 (2017).

    Article  Google Scholar 

  7. Kappera, R. et al. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 13, 1128–1134 (2014).

    Article  Google Scholar 

  8. Kim, G. S. et al. Schottky barrier height engineering for electrical contacts of multilayered MoS2 transistors with reduction of metal-induced gap states. ACS Nano 12, 6292–6300 (2018).

    Article  Google Scholar 

  9. Wang, Y. et al. Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors. Nature 568, 70–74 (2019).

    Article  Google Scholar 

  10. Bampoulis, P. et al. Defect dominated charge transport and Fermi level pinning in MoS2/metal contacts. ACS Appl. Mater. Interfaces 9, 19278–19286 (2017).

    Article  Google Scholar 

  11. McDonnell, S., Addou, R., Buie, C., Wallace, R. M. & Hinkle, C. L. Defect-dominated doping and contact resistance in MoS2. ACS Nano 8, 2880–2888 (2014).

    Article  Google Scholar 

  12. Dagan, R., Vaknin, Y. & Rosenwaks, Y. Gap state distribution and Fermi level pinning in monolayer to multilayer MoS2 field effect transistors. Nanoscale 12, 8883–8889 (2020).

    Article  Google Scholar 

  13. Addou, R., Colombo, L. & Wallace, R. M. Surface defects on natural MoS2. ACS Appl. Mater. Interfaces 7, 11921–11929 (2015).

    Article  Google Scholar 

  14. Sotthewes, K. et al. Universal Fermi-level pinning in transition-metal dichalcogenides. J. Phys. Chem. C 123, 5411–5420 (2019).

    Article  Google Scholar 

  15. Kim, C. et al. Fermi level pinning at electrical metal contacts of monolayer molybdenum dichalcogenides. ACS Nano 11, 1588–1596 (2017).

    Article  Google Scholar 

  16. Das, S., Chen, H. Y., Penumatcha, A. V. & Appenzeller, J. High performance multilayer MoS2 transistors with scandium contacts. Nano Lett. 13, 100–105 (2013).

    Article  Google Scholar 

  17. Gong, C., Colombo, L., Wallace, R. M. & Cho, K. The unusual mechanism of partial Fermi level pinning at metal–MoS2 interfaces. Nano Lett. 14, 1714–1720 (2014).

    Article  Google Scholar 

  18. Liu, Y. et al. Approaching the Schottky–Mott limit in van der Waals metal–semiconductor junctions. Nature 557, 696–700 (2018).

    Article  Google Scholar 

  19. Shim, J. et al. Controlled crack propagation for atomic precision handling of wafer-scale two-dimensional materials. Science 362, 665–670 (2018).

    Article  Google Scholar 

  20. Kang, K. et al. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 520, 656–660 (2015).

    Article  Google Scholar 

  21. Kang, K. et al. Layer-by-layer assembly of two-dimensional materials into wafer-scale heterostructures. Nature 550, 229–233 (2017).

    Article  Google Scholar 

  22. Yuan, G. et al. Proton-assisted growth of ultra-flat graphene films. Nature 577, 204–208 (2020).

    Article  Google Scholar 

  23. Chen, J. et al. Synthesis of wafer-scale monolayer WS2 crystals toward the application in integrated electronic devices. ACS Appl. Mater. Interfaces 11, 19381–19387 (2019).

    Article  Google Scholar 

  24. Chubarov, M. et al. Wafer-scale epitaxial growth of unidirectional WS2 monolayers on sapphire. ACS Nano 15, 2532–2541 (2021).

    Article  Google Scholar 

  25. Wang, Q. et al. Wafer-scale highly oriented monolayer MoS2 with large domain sizes. Nano Lett. 20, 7193–7199 (2020).

    Article  Google Scholar 

  26. Kum, H. S. et al. Heterogeneous integration of single-crystalline complex-oxide membranes. Nature 578, 75–81 (2020).

    Article  Google Scholar 

  27. Kim, Y. et al. Remote epitaxy through graphene enables two-dimensional material-based layer transfer. Nature 544, 340–343 (2017).

    Article  Google Scholar 

  28. Wang, T. et al. Wafer-scale fabrication of single-crystal graphene on Ge(110) substrate by optimized CH4/H2 ratio. Appl. Surf. Sci. 529, 147066 (2020).

    Article  Google Scholar 

  29. Lee, J. H. et al. Wafer-scale growth of single-crystal monolayer graphene on reusable hydrogen-terminated germanium. Science 344, 286–289 (2014).

    Article  Google Scholar 

  30. Yoon, H. H. et al. Strong Fermi-level pinning at metal/n-Si(001) interface ensured by forming an intact Schottky contact with a graphene insertion layer. Nano Lett. 17, 44–49 (2017).

    Article  Google Scholar 

  31. Lafontaine, W. R. & Li, C. Y. Hardness and adhesion measurements of copper metallizations by a continuous indentation approach. MRS Proc. 203, 163–168 (1990).

    Article  Google Scholar 

  32. Jung, Y. et al. Transferred via contacts as a platform for ideal two-dimensional transistors. Nat. Electron. 2, 187–194 (2019).

    Article  Google Scholar 

  33. Noh, J. Y., Kim, H. & Kim, Y. S. Stability and electronic structures of native defects in single-layer MoS2. Phys. Rev. B 89, 205417 (2014).

    Article  Google Scholar 

  34. Lee, C. H. et al. Atomically thin p–n junctions with van der Waals heterointerfaces. Nat. Nanotechnol. 9, 676–681 (2014).

    Google Scholar 

  35. Fang, H. et al. Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides. Proc. Natl Acad. Sci. USA 111, 6198–6202 (2014).

    Article  Google Scholar 

  36. Mak, K. F. et al. Tightly bound trions in monolayer MoS2. Nat. Mater. 12, 207–211 (2013).

    Article  Google Scholar 

  37. Kong, L. G. et al. Doping-free complementary WSe2 circuit via van der Waals metal integration. Nat. Commun. 11, 1866 (2020).

    Article  Google Scholar 

  38. Shinde, N. B. et al. Large-scale atomically thin monolayer 2H-MoS2 field-effect transistors. ACS Appl. Nano Mater. 3, 7371–7376 (2020).

    Article  Google Scholar 

  39. Oh, J. Y., Park, J. T., Jang, H. J., Cho, W. J. & Islam, M. S. 3D-transistor array based on horizontally suspended silicon nano-bridges grown via a bottom-up technique. Adv. Mater. 26, 1929–1934 (2014).

    Article  Google Scholar 

Download references


We thank the National Natural Science Foundation of China (grant nos. 51925208, 61974157 and 61851401); Key Research Project of Frontier Science, Chinese Academy of Sciences (QYZDB-SSW-JSC021); National Science and Technology Major Project (2016ZX02301003); Science and Technology Innovation Action Plan of Shanghai Science and Technology Committee (20501130700); Strategic Priority Research Program (B) of the Chinese Academy of Sciences (XDB30030000); and Science and Technology Commission of Shanghai Municipality (19JC1415500 and 21JC1406100).

Author information

Authors and Affiliations



Z.D. and W.H. conceived the project. G.L. and Z.T. fabricated the samples and performed the measurements. Z.Y. and L.L. contributed to the transfer printing method. Z.X. and M.Z. contributed to the wafer-scale transfer. X.H. and Y.Y. performed the Raman measurements. Y.W. and W.H. contributed to the electrical measurements. P.K.C. and Y.M. contributed to the data analysis and manuscript revision. Z.D., Z.T. and G.L. wrote the manuscript. All the authors discussed the results and contributed to the manuscript.

Corresponding authors

Correspondence to Weida Hu or Zengfeng Di.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Electronics thanks Soon-Yong Kwon, Chengyan Xu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–14 and Tables 1 and 2.

Supplementary Data 1

Statistical supplementary source data.

Source data

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, G., Tian, Z., Yang, Z. et al. Graphene-assisted metal transfer printing for wafer-scale integration of metal electrodes and two-dimensional materials. Nat Electron 5, 275–280 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing